精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,已知AB=2a,∠A=30°,CD是AB边的中线,若将△ABC沿CD对折起来,折叠后两个小△ACD与△BCD重叠部分的面积恰好等于折叠前△ABC的面积的
1
4
,有如下结论:①BC的边长等于a;②折叠前的△ABC的面积可以等于
3
3
a2
;③折叠后,以A、B为端点的线段与中线CD平行且相等,其中正确的结论是______.
如图,设B′D与AC相交于O,
∵CD是AB边的中线,
∴S△ACD=S△BCD=
1
2
S△ABC
∵重叠部分的面积恰好等于折叠前△ABC的面积的
1
4

∴点O是AC、B′D的中点,
∴四边形ADCB′是平行四边形,
∴AB′CD,B′CAD,B′C=AD,故③正确;
∴B′CBD,B′C=BD,
∴四边形BCB′D是平行四边形,
由翻折变换的性质得,BC=B′C,
∴平行四边形BCB′D是菱形,
∴BC=BD=
1
2
AB=
1
2
×2a=a,故①正确;
假设折叠前的△ABC的面积可以等于
3
3
a2
设点C到AB的距离为h,
1
2
×2ah=
3
3
a2
解得h=
3
3
a,
3
3
a÷tan30°=
3
3
3
3
=a,
∴垂足为AB的中点D,
∴翻折后点A、B重合,不符合题意,
∴假设不成立,故②错误.
综上所述,正确的结论有①③.
故答案为:①③.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图(1),在Rt△ABCd,∠B=90°,A十平分∠BAC,将AB沿A十折叠,使点B落在AC上一点D处,已知AB=1,BC=8,可用下面的方法求线段B十的长:
由折叠可知:AD=AB=1,B十=D十,∠AD十=∠AB十=90°
在Rt△ABCd,∠B=90°,∴AC2=AB2+BC2=12+82=100
∴AC=10,CD=AC-AD=d,设B十=D十=得,则C十=8-得
在Rt△C十Dd,∠十DC=90°,∴十C2=十D2+CD2,即(8-得)2=得2+d2,整理得:1d-11得=11
解得:得=1
仿上面的解答法解答下题:
如图(2),在矩形ABCDd,AB=的cm,AD=11cm,在边CD上适当选定一点十,沿直线A十把△AD十折叠,使点D恰好落在边BC上一点F处,求D十的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下面由正三角形和正方形拼成的图形中,是轴对称图形但不是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.(保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线OD交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC度数为______°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图①,矩形纸片ABCD,AB=12cm,AD=16cm,现按以下步骤折叠:(1)将∠BAD对折,使AB落在AD上,得折痕AF,如图②;(2)将△AFB沿BF折叠,AF与DC交于点G,如图③,则GC的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△ABC在平面直角坐标系中的位置如图所示.
(1)直接写出点A的坐标;
(2)作出△ABC关于x轴对称的△A1B1C1,并分别写出点A1,B1,C1的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△ABC在方格纸中的位置如图所示.
(1)请在方格纸上建立直角坐标系,使得点A的坐标为(3,1),并写出点B和点C的坐标;
(2)求出△ABC的面积;
(3)作出△ABC关于x轴对称的△A1B1C1
(4)把△A1B1C1向上平移3个单位后再向左平移4个单位,得到△DEF,画出△DEF,并写出点D、E、F的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将△ABE沿直线AC翻折,使点B与AE边上的点D重合,若AB=AC=5,AE=9,则CE=______.

查看答案和解析>>

同步练习册答案