【题目】如图,在△ABC中,AB=AC=5,,将△ABC绕点B逆时针旋转,得到,当点在线段CA延长线上时的面积为_________.
科目:初中数学 来源: 题型:
【题目】如图,直线y=x﹣1与抛物线y=﹣x2+6x﹣5相交于A、D两点.抛物线的顶点为C,连结AC.
(1)求A,D两点的坐标;
(2)点P为该抛物线上一动点(与点A、D不重合),连接PA、PD.
①当点P的横坐标为2时,求△PAD的面积;
②当∠PDA=∠CAD时,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点,点在点的左侧,抛物线与轴正半轴交于点,分别连接、,则有,,
(1)求抛物线的函数表达式;
(2)设为抛物线的顶点,点为线段上任意一点,过点作轴的垂线分别交直线及抛物线于点、点,当是锐角三角形时,求的取值范围.
(3)在(2)的前提下,设,求 的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:
在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.
操作发现:
(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使,得到如图2所示的△,过点C作的平行线,与的延长线交于点E,则四边形的形状是 .
(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△,连接,取的中点F,连接AF并延长至点G,使FG=AF,连接CG、,得到四边形,发现它是正方形,请你证明这个结论.
实践探究:
(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至点,与相交于点H,如图4所示,连接,试求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】参照学习函数的过程与方法,探究函数y=的图象与性质.
因为y=,即y=﹣+1,所以我们对比函数y=﹣来探究.
列表:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | ﹣ | 1 | 2 | 3 | 4 | … | |
y=﹣ | … | 1 | 2 | 4 | ﹣4 | ﹣1 | 1 | ﹣ | ﹣ | … | ||
y= | … | 2 | 3 | 5 | ﹣3 | ﹣1 | 0 | … |
描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:
(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;
(2)观察图象并分析表格,回答下列问题:
①当x<0时,y随x的增大而 ;(填“增大”或“减小”)
②y=的图象是由y=﹣的图象向 平移 个单位而得到;
③图象关于点 中心对称.(填点的坐标)
(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线∥∥,一等腰Rt△ABC的三个顶点A、B、C分别在直线、、上,∠ACB=90°,AC交于点D.若与的距离为1,与的距离为4,则的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择,某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论,为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)求本次调查的学生总人数,并通过计算补全条形统计图;
(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;
(3)该校共有学生1800人,请你估计该校对在线阅读最感兴趣的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于A,B(﹣1,0)两点,与y轴交于点C,则下列四个结论:①ac<0;②2a+b=0;③﹣1<x<3时,y<0;④4a+c<0.其中所有正确结论的序号是( )
A.①②④B.①③④C.①②③D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于的二次函数的图象开口向下,与的部分对应值如下表所示:
下列判断,①;②;③方程有两个不相等的实数根;
④若,则,正确的是________________(填写正确答案的序号) .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com