精英家教网 > 初中数学 > 题目详情
10.如图,C、D、E、F为线段AB上顺次排列的4个动点(不与A、B重合),图中共有15条线段.若AB=8.6cm,DE=1cm,图中所有线段长度之和为56cm,则线段CF长为4cm.

分析 可以设出线段CF的长,再根据图中所有线段的长度之和为56cm,即可列出方程,解方程即可求出答案.

解答 解:5+4+3+2+1=15(条)
设线段CF的长为xcm,依题意有
8.6×5+3x+1=56,
解得x=4.
答:图中共有15条线段,线段CF长为4cm.
故答案为:15,4.

点评 本题考查了两点间的距离,有一定难度,根据题意列出方程式,并探讨解的合理性是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50(含5和50)之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据:
薄板的边长(cm)2030
出厂价(元/张)5070
(1)求一张薄板的出厂价y与边长x之间满足的函数关系式,并写出自变量的取值范围;
(2)已知出厂一张边长为40cm的薄板,获得利润是26元(利润=出厂价-成本价).
①求一张薄板的利润W与边长x这之间满足的函数关系式;
②当边长为多少厘米时,出厂一张薄板获得的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,BD是△ABC的角平分线,点E、F分别在BC、AB上,且DE∥AB,EF∥AC.
(1)指出图中的一个等腰三角形,并加以证明;
(2)求证:BE=AF;
(3)若∠ABC=60°,ED=AD,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶:不相同时,不能获得任何奖品.
根据以上规则,回答下列问题:
(1)求一次“有效随机转动”可获得“乐”字的概率;
(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.分解因式:-mx2-6mx-9m=-m(x-3)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在斜坡顶部有一铁塔AB,B是CD的中点,CD是水平的.在阳光的照射下,塔影DE留在斜坡面上.在同一时刻,小明站在点E处,其影子EF在直线DE上,小华站在点G处,影子GH在直线CD上,他们的影子长分别为2m和1m.已知CD=12m,DE=18m,小明和小华身高均为1.6m,那么塔高AB为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:(-$\frac{1}{2}$)-2+$\sqrt{8}$+|1-$\sqrt{2}$|0-2sin60°+tan60°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若关于x的一元二次方程kx2-4x+1=0有实数根,则k的取值范围是(  )
A.k=4B.k>4C.k≤4且k≠0D.k≤4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F,另一边交CB的延长线于点C.

(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变.
①(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
②若EC=2,试求四边形EFCG的面积.

查看答案和解析>>

同步练习册答案