20£®Èçͼ£¬¶þ´Îº¯Êýy=x2+bx+cµÄͼÏóÓëxÖá½»ÓÚA¡¢BÁ½µã£¬ÇÒAµã×ø±êΪ£¨-3£¬0£©£¬¾­¹ýBµãµÄÖ±Ïß½»Å×ÎïÏßÓÚµãD£¨-2£¬-3£©£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ
£¨2£©¹ýxÖáÉϵãE£¨a£¬0£©£¨EµãÔÚBµãµÄÓҲࣩ×÷Ö±ÏßEF¡ÎBD£¬½»Å×ÎïÏßÓÚµãF£¬ÊÇ·ñ´æÔÚʵÊýaʹËıßÐÎBDFEÊÇƽÐÐËıßÐΣ¿Èç¹û´æÔÚ£¬Çó³öÂú×ãÌõ¼þµÄa£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÔÚ¶þ´Îº¯ÊýÉÏÓÐÒ»¶¯µãP£¬¹ýµãP×÷PM¡ÍxÖá½»Ï߶ÎBDÓÚµãM£¬ÅжÏPMÓÐ×î´óÖµ»¹ÊÇÓÐ×îСֵ£¬ÈçÓУ¬Çó³öÏ߶ÎPM³¤¶ÈµÄ×î´óÖµ»ò×îСֵ£®

·ÖÎö £¨1£©°ÑA¡¢DÁ½µãµÄ×ø±ê´úÈë¶þ´Îº¯Êý½âÎöʽ¿ÉµÃ¶þ´Îº¯Êý½âÎöʽÖÐb£¬cµÄÖµ£»
£¨2£©Èöþ´Îº¯ÊýµÄyµÈÓÚ0ÇóµÃÅ×ÎïÏßÓëxÖáµÄ½»µãB£¬°ÑB¡¢DÁ½µã´úÈëÒ»´Îº¯Êý½âÎöʽ¿ÉµÃÖ±ÏßBDµÄ½âÎöʽ£»µÃµ½ÓÃa±íʾµÄEFµÄ½âÎöʽ£¬¸ú¶þ´Îº¯Êý½âÎöʽ×é³É·½³Ì×飬µÃµ½º¬yµÄÒ»Ôª¶þ´Î·½³Ì£¬½ø¶ø¸ù¾Ýy=-3ÇóµÃºÏÊʵÄaµÄÖµ¼´¿É£»
£¨3£©¸ù¾ÝÅ×ÎïÏߵĽâÎöʽºÍÖ±ÏߵĽâÎöʽ£¬Éè³öP¡¢MµÄ×ø±ê£¬¸ù¾ÝÌâÒâÁгöPM=|m2+2m-3-£¨m-1£©|=|m2+m-2|=|£¨m+$\frac{1}{2}$£©2-$\frac{9}{4}$|£¬¼´¿ÉÇóµÃ£®

½â´ð ½â£º£¨1£©½«A£¨-3£¬0£©£¬D£¨-2£¬-3£©µÄ×ø±ê´úÈëy=x2+bx+cµÃ£¬
$\left\{\begin{array}{l}{9-3b+c=0}\\{4-2b+c=-3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{b=2}\\{c=-3}\end{array}\right.$£¬
Ôò¸ÃÅ×ÎïÏߵĽâÎöʽΪ£ºy=x2+2x-3£®    

£¨2£©Èçͼ1£¬ÓÉ£¨1£©Öª£¬Å×ÎïÏߵĽâÎöʽΪ£ºy=x2+2x-3£®
Áîy=0£¬Ôòx2+2x-3=0£¬
µÃ£ºx1=-3£¬x2=1£¬
¡àBµÄ×ø±êÊÇ£¨1£¬0£©£¬
ÉèÖ±ÏßBDµÄ½âÎöʽΪy=kx+b£¨k¡Ù0£©£¬Ôò
$\left\{\begin{array}{l}{k+b=0}\\{-2k+b=-3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=1}\\{b=-1}\end{array}\right.$£¬
¡àÖ±ÏßBDµÄ½âÎöʽΪy=x-1£®  
ÓÖ¡ßEF¡ÎBD£¬
¡àÖ±ÏßEFµÄ½âÎöʽΪ£ºy=x-a£¬
ÈôËıßÐÎBDFEÊÇƽÐÐËıßÐΣ¬
ÔòDF¡ÎxÖᣬ
¡àD¡¢FÁ½µãµÄ×Ý×ø±êÏàµÈ£¬¼´µãFµÄ×Ý×ø±êΪ-3£®
ÓÉ$\left\{\begin{array}{l}{y={x}^{2}+2x-3}\\{y=x-a}\end{array}\right.$£¬µÃ
ÓÉy=x-aµÃ£¬x=y+a£¬´úÈë·½³Ìy=x2+2x-3µÃ£¬
y2+£¨2a+1£©y+a2+2a-3=0£¬
½âµÃ£ºy=$\frac{-£¨2a+1£©¡À\sqrt{13-4a}}{2}$£®
Áî$\frac{-£¨2a+1£©¡À\sqrt{13-4a}}{2}$=-3£¬
½âµÃ£ºa1=1£¬a2=3£®
µ±a=1ʱ£¬EµãµÄ×ø±ê£¨1£¬0£©£¬ÕâÓëBµãÖغϣ¬ÉáÈ¥£»
¡àµ±a=3ʱ£¬EµãµÄ×ø±ê£¨3£¬0£©£¬·ûºÏÌâÒ⣮
¡à´æÔÚʵÊýa=3£¬Ê¹ËıßÐÎBDFEÊÇƽÐÐËıßÐΣ®

£¨3£©ÉèM£¨m£¬m-1£©£¬ÔòP£¨m£¬m2+2m-3£©£¬
¡àPM=|m2+2m-3-£¨m-1£©|=|m2+m-2|=|£¨m+$\frac{1}{2}$£©2-$\frac{9}{4}$|£¬
¡àµ±m=-$\frac{1}{2}$ʱ£¬PMÓÐ×î´óÖµ£¬×î´óֵΪ$\frac{9}{4}$£¬
´ËʱP£¨-$\frac{1}{2}$£¬$\frac{3}{2}$£©£¬
¡àµãP×ø±êΪ£¨-$\frac{1}{2}$£¬$\frac{3}{2}$£©Ê±£¬Ï߶ÎPE³¤¶ÈÓÐ×î´óÖµ£¬×î´óÖµÊÇ$\frac{9}{4}$£®

µãÆÀ ´ËÌâ×ۺϿ¼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣮ÆäÖÐÉæ¼°µ½ÁË´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý¡¢¶þ´Îº¯Êý½âÎöʽ£¬Öá¶Ô³ÆµÄÐÔÖÊ£¬¶þ´Îº¯Êý×îÖµµÄÇó·¨ÒÔ¼°Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖÊ£®Æ½ÃæÖ±½Ç×ø±êϵÖУ¬Á½Ö±ÏßƽÐУ¬Ò»´ÎÏîϵÊýµÄÖµÏàµÈ£»Á½¸öµãËùÔÚµÄÖ±ÏßƽÐУ¬ÕâÁ½¸öµãµÄ×Ý×ø±êÏàµÈ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èôxm•x2m=2£¬Çóx9mµÄÖµÊÇ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãOΪ×ø±êÔ­µã£¬µãDÊÇ·´±ÈÀýº¯Êýy=$\frac{2\sqrt{3}}{x}$£¨x£¾0£©Í¼ÏóÉÏÒ»¸ö¶¯µã£¬ÒÔDΪԲÐĵÄԲʼÖÕÓëyÖáÏàÇУ¬ÉèÇеãΪA£®
£¨1£©Èçͼ¢Ù£¬¡ÑDÔ˶¯µ½ÓëxÖáÏàÇÐÓÚµãHʱ£¬ÅжÏËıßÐÎOHDAµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èçͼ¢Ú£¬¡ÑDÔ˶¯µ½ÓëxÖáÏཻ£¬Éè½»µãΪB£¬C£¬µ±ËıßÐÎABCDÊÇÁâÐÎʱ£¬Çó¡ÑDµÄ°ë¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Í¼1¡¢Í¼2·Ö±ðÊÇ7¡Á7µÄÕý·½ÐÎÍø¸ñ£¬Íø¸ñÖÐÿ¸öСÕý·½Ðεı߳¤¾ùΪ1£¬µãA¡¢BÔÚСÕý·½ÐεĶ¥µãÉÏ£®
£¨1£©ÔÚͼ1ÖÐÈ·¶¨µãC¡¢D£¨µãC¡¢DÔÚСÕý·½ÐεĶ¥µãÉÏ£©£¬²¢»­³öÒÔA¡¢B¡¢C¡¢DΪ¶¥µãµÄËıßÐΣ¬Ê¹ÆäÊÇÖÐÐĶԳÆͼÐΣ¬µ«²»ÊÇÖá¶Ô³ÆͼÐΣ¬ÇÒÃæ»ýΪ15£»
£¨2£©ÔÚͼ2ÖÐÈ·¶¨µãE¡¢F£¨µãE¡¢FÔÚСÕý·½ÐεĶ¥µãÉÏ£©£¬²¢»­³öÒÔA¡¢B¡¢E¡¢FΪ¶¥µãµÄËıßÐΣ¬Ê¹Æä¼ÈÊÇÖá¶Ô³ÆͼÐΣ¬ÓÖÊÇÖÐÐĶԳÆͼÐΣ¬ÇÒÃæ»ýΪ15£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªx=$\sqrt{3}$-2$\sqrt{2}$£¬Çóx10µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÓÉ16¸ö±ß³¤ÏàµÈµÄСÕý·½ÐÎ×é³ÉµÄͼÐÎÈçͼËùʾ£¬ÇëÄãÓÃÒ»Ìõ¸îÏߣ¨¿ÉÒÔÊÇÕÛÏߣ©½«Ëü·Ö¸î³ÉÁ½¸öͼÐΣ¬Ê¹Ö®¹ØÓÚijһµã³ÉÖÐÐĶԳƣ¬ÒªÇó¸ø³öÁ½ÖÖ²»Í¬µÄ·½·¨£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔÚʵÊý2¡¢0¡¢-1¡¢-$\sqrt{15}$ÖУ¬×îСµÄʵÊýÊÇ£¨¡¡¡¡£©
A£®2B£®0C£®-1D£®-$\sqrt{15}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ä³ÖÖ·þװÿÏúÊÛÒ»¼þ¿É»ñÀû45Ôª£¬¹ý´º½Úʱ£¬ÎªÁ˱¡Àû¶àÏú¼õÉÙ·þ×°µÄ»ýѹ£¬ÏúÊ۸÷þ×°µÄÀÏ°åÔÚËû¾­ÓªµÄÁ½¸öµêÖвÉÓò»Í¬µÄÏúÊÛ·½Ê½£ºAµêµÄÏúÊÛ·½Ê½ÊÇÔÚ±ê¼ÛµÄ»ù´¡ÉÏ´ò°ËÎåÕÛ£»BµêµÄÏúÊÛ·½Ê½ÊÇÊÛ¼ÛÔÚ±ê¼ÛµÄ»ù´¡ÉϽµ35Ôª£¬´Ëʱ£¬ÀÏ°å·¢ÏÖAµêÊÛ8¼þÓëÔÚBµêÊÛ12¼þËù»ñµÄÀûÈóÏàͬ£®Çó¸Ã·þ×°µÄ½ø¼ÛºÍ±ê¼Û£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ1£¬ÔÚ¡÷ABCÖУ¬AB=5£¬BC=6£¬AC=4£¬µãD´ÓA³ö·¢£¬ÔÚAB±ßÉÏÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÏòBÔ˶¯£¬¹ýµãD×÷DE¡ÎBC½»ACÓÚE£¬¹ýµãD×÷DF¡ÎAC½»BCÓÚF£¬Ô˶¯Ê±¼äΪtÃ룮
£¨1£©µ±tΪºÎֵʱ£¬ËıßÐÎDFCEΪÁâÐΣ»
£¨2£©Èçͼ2£¬GΪ±ßBCÉÏÈÎÒ»µã£¬Á¬½ÓDG½»BEÓÚH£¬ÑÓ³¤AH½»BCÓÚM£¬½»DEÓÚN£®ÇóÖ¤£ºBM2=MG•MC£»
£¨3£©Èçͼ3£¬µãMΪ±ßBCÉÏ£¬AM½»DFÓÚP£¬ÈôBM£ºMC=3£º2£¬µ±tΪºÎֵʱ£¬µãPÇ¡ºÃΪMNµÄÖе㣿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸