精英家教网 > 初中数学 > 题目详情
如图所示,在等腰三角形ABC中,∠B=90°,AB=BC=4米,点P以1米/分的速度从A点出发移动到B点,同时点Q以2米/分的速度从点B移动到C点(当一个点到达后全部停止移动).
(1)设经过x分钟后,△PCB的面积为y1,△QAB的面积为y2,求出y1,y2关于x的函数关系式;
(2)同时移动多少分钟,这两个三角形的面积相等?
(3)移到时间在什么范围内时,①△PCB的面积大于△QAB的面积?②△PCB的面积小于△QAB的面积?
(1)依题意得:y1=
1
2
PB•CB=
1
2
(4-x)•4=8-2x(0≤x≤2)
y2=
1
2
BQ•AB=
1
2
×4•2x=4x(0<x≤2)
(2)当y1=y2时,8-2x=4x
∴x=
4
3

(3)当y1>y2时,8-2x>4x
∴x<
4
3

当y1<y2,8-2x<4x
∴x>
4
3

答:(1)函数关系式分别为:y1=8-2x(0≤x≤2);y2=4x(0<x≤2);
(2)同时移动
4
3
•分钟;这两个三角形面积相等;
(3)移动时间0<x<
4
3
时,△PCB的面积大于△QAB的面积;
4
3
<x≤2时,△PCB的面积小于△QAB的面积.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知一次函数的图象经过点(-2,1)和(4,4)
(1)求一次函数的解析式,并画出图象;
(2)P为该一次函数图象上一点,A为该函数图象与x轴的交点,若S△PAO=6,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是某汽车行驶的路程s(千米)与时间t(分钟)的函数关系图.观察图中所提供的信息,解答下列问题:
(1)汽车在前9分钟的平均速度是______千米/分钟.
(2)汽车在途中停留的时间为______分钟.
(3)当16≤t≤30时,求s与t的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形OABC的顶点A(0,4),B(-2,4),C(-4,0).过作B、C直线l,将直线l平移,平移后的直线l与x轴交于D,与y轴交于点E.
探究:当直线l向左或向右平移时(包括直线l与BC直线重合),在直线AB上是否存在P,使△PDE为等腰三角形?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线L的解析式为y=-3x+3,且L与x轴交于点D,直线m经过点A、B,直线L、m交于点C.
(1)求直线m的解析式;
(2)在直线m上存在异于点C的点P,使得△ADP与△ADC的面积相等,请求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线y=kx+b与x轴相交于点A(-4,0),则当y>0时,x的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

拖拉机刚开始工作时,油箱中有40升油,且工作每小时耗油5升.
(1)请写出拖拉机邮箱中的余油量Q(升)与工作时间t(小时)的函数关系式;
(2)求出自变量t的取值范围;
(3)画出这个函数的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子.动点P,Q同时从点A出发,点P沿A?B?C方向以每秒2cm的速度运动,到点C停止,点Q沿A?D方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸缩的细橡皮筋连接,设x秒后橡皮筋扫过的面积为ycm2
(1)当0≤x≤1时,求y与x之间的函数关系式;
(2)当橡皮筋刚好触及钉子时,求x值;
(3)当1≤x≤2时,求y与x之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时∠POQ的变化范围;
(4)当0≤x≤2时,请在给出的直角坐标系中画出y与x之间的函数图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

南京至上海的沪宁高速公路长约300千米.甲、两车同时分别从距南京240千米、60千米的入口行驶上沪宁高速上正常行驶.甲车驶往南京、乙车驶往上海.甲车在行驶过程中速度始终不变.甲车离南京(沪宁高速公路南京起点)的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.
(1)求出甲车离南京的距离y(千米)与行驶时间x(时)之间的函数表达式;
(2)乙车若以60千米/时的速度匀速行驶,1小时后两车相距多少千米
(3)乙车按(2)中状态行驶与甲车相遇后,速度改为a千米/时,结果两车同时到达沪宁高速南京、上海起点,求乙车变化后的速度a;并在如图所示的直角坐标系中,画出乙离南京的距离y(千米)与行驶时间x(时)之间的函数图象.

查看答案和解析>>

同步练习册答案