精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,在△ABC中,以AB为直径的⊙O交BC于点P,PD⊥AC于点D,且PD与⊙O相切.
(1)求证:AB=AC;
(2)若BC=6,AB=4,求CD的值.
分析:(1)连接OP,根据切线的性质可知OP⊥PD,可求出OP∥AC,根据三角形中位线定理可知,OP=
1
2
AC,由于OP=
1
2
AB即可解答.
(2)连接AP,可得出Rt△CDP∽Rt△CPA,进而根据相似三角形的性质解答即可.
解答:精英家教网(1)证明:连接OP,
∵PD与⊙O相切,
∴OP⊥PD,
∵AC⊥PD,
∴OP∥AC,
∵OP=0A=OB=
1
2
AB,
∴OP是△ABC的中位线,∴OP=
1
2
AC,
∴AC=AB.

(2)解:连接AP,
∵AB为直径,
∴AP⊥BC;
由(1)知,AC=AB=4,
∴PC=PB;
又∵BC=6,
∴PC=3;
在Rt△CDP与Rt△CPA中,∠C=∠C,
∴Rt△CDP∽Rt△CPA,
PC
AC
=
CD
PC

∵BC=6,AB=4,
3
4
=
CD
3

CD=
9
4
点评:此题比较复杂,解答此题的关键是连接OP、AP,综合利用切线、相似三角形、等腰三角形等知识来求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于点F,求∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.
求证:(1)四边形AFCE是平行四边形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=
115
度,若△ADE的周长为19cm,则BC=
19
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E,交AC于D,若△BCD的周长为18cm,△ABC的周长为30cm,那么BE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P点在BC上从B点向C点运动(不包括点C),点P的运动速度为2cm∕s;Q点在AC上从C点向点A运动(不包括点A),运动速度为5cm∕s,若点P、Q分别从B、C同时运动,请解答下面的问题,并写出主要过程.
(1)经过多长时间后,P、Q两点的距离为5
2
cm?
(2)经过多长时间后,△PCQ面积为15cm2

查看答案和解析>>

同步练习册答案