精英家教网 > 初中数学 > 题目详情
5.药品研究所开发一种抗菌新药,经过多年的动物实验后,首次用于临床人体试验,测得成人服药后血液中的药物浓度y(μg/ml)与服药后时间x(h)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是(  )
A.$\frac{8}{3}$≤y≤$\frac{64}{11}$B.$\frac{64}{11}$≤x≤8C.$\frac{8}{3}$≤y≤8D.8≤x≤16

分析 根据题意和函数图象分别求得相应的函数解析式,再将x=1和x=6代入相应的函数解析式即可求得y的取值范围.

解答 解:设当0≤x≤3时,y与x的函数关系式为y=kx,
3k=8,得k=$\frac{8}{3}$,
∴当0≤x≤3时,y与x的函数关系式为y=$\frac{8}{3}x$,
∴当x=1时,y=$\frac{8}{3}$,
设当3≤x≤14时,y与x的函数关系式为y=ax+b,
$\left\{\begin{array}{l}{3a+b=8}\\{14a+b=0}\end{array}\right.$,得$\left\{\begin{array}{l}{a=-\frac{8}{11}}\\{b=\frac{112}{11}}\end{array}\right.$,
即当3≤x≤14时,y与x的函数关系式为y=$-\frac{8}{11}x+\frac{112}{11}$,
则当x=6时,y=$-\frac{8}{11}×6+\frac{112}{11}$=$\frac{64}{11}$,
∵$\frac{8}{3}<\frac{64}{11}$,当1≤x≤6时,y的最大值是8,
∴y的取值范围是$\frac{8}{3}≤y≤8$,
故选C.

点评 本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.计算:
(1)|-5|+(π-3.1)0-($\frac{1}{2}$)-1+$\sqrt{4}$;
(2)1-$\frac{a}{b}$÷$\frac{3a}{2b}$•$\frac{2b}{3a}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在△ABC中,∠C是直角,将△BCE沿BE翻折,点C恰好落在边AB的中点D的位置上;再沿ED翻折,△ADE恰好与△BDE重合,写出图中所有的全等三角形,图中与∠A对应相等的有哪些角?与线段BC对应相等的有哪些线段?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若a=-(-2)2,b=-(-3)3,c=-(-4)2,则-[a-(b-c)]的值为(  )
A.-39B.7C.15D.47

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF中,∠ECF=90°,面积为200,则BE的值为12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在△ABC中,AB=AC,点O为BC中点,⊙O与AC相切于点D,连接DO并延长,与AB的延长线相交于点E.
(1)判断⊙O与AB的位置关系,并证明;
(2)若BE=$\frac{5}{3}$,AC=5,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知:在平行四边形ABCD中,AE⊥BC,垂足为E,点F为CD的中点,连接AF,EE.
(1)若CE=CD,∠ABC=45°,AE=3,求BC的长;
(2)求证:①AF=EF;②∠DAF=$\frac{1}{2}$∠AFE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.有这样一个问题:探究函数y=$\frac{1}{2}$x2+$\frac{1}{x}$的图象与性质,小东根据学习函数的经验,对函数y=$\frac{1}{2}$x2+$\frac{1}{x}$的图象与性质进行了探究,下面是小东的探究过程,请补充完整:
(1)下表是y与x的几组对应值.
 x-3-2-1$-\frac{1}{2}$$-\frac{1}{3}$$\frac{1}{3}$$\frac{1}{2}$123
 y$\frac{25}{6}$$\frac{3}{2}$$-\frac{1}{2}$$-\frac{15}{8}$-$\frac{53}{18}$$\frac{55}{18}$$\frac{17}{8}$$\frac{3}{2}$$\frac{5}{2}$m
函数y=$\frac{1}{2}$x2+$\frac{1}{x}$的自变量x的取值范围是x≠0,m的值为$\frac{29}{6}$;
(2)在如图所示的平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并画出该函数的大致图象;
(3)进一步探究函数图象发现:
①函数图象与x轴有1个交点,所以对应方程$\frac{1}{2}$x2+$\frac{1}{x}$=0有1个实数根;
②方程$\frac{1}{2}$x2+$\frac{1}{x}$=2有3个实数根;
③结合函数的图象,写出该函数的一条性质函数没有最大值或这个函数没有最小值,函数图象没有经过第四象限.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,直线l1∥l2,过l1上两点A,C分别作AB⊥l2,CD⊥l2,则下列说法正确的是(  )
A.AB>CDB.AB<CDC.AB=CDD.D、

查看答案和解析>>

同步练习册答案