A. | 30° | B. | 40° | C. | 36° | D. | 45° |
分析 由BD=BC=AD可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC可知,△ABC为等腰三角形,则∠ABC=∠C=2x,在△ABC中,用内角和定理列方程求解.
解答 解:∵BD=BC=AD,
∴△ABD,△BCD为等腰三角形,
设∠A=∠ABD=x,则∠C=∠CDB=2x,
又∵AB=AC可知,
∴△ABC为等腰三角形,
∴∠ABC=∠C=2x,
在△ABC中,∠A+∠ABC+∠C=180°,
即x+2x+2x=180°,
解得x=36°,
即∠A=36°.
故选C.
点评 本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①②③ | B. | ①③ | C. | ③④ | D. | ①②④ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com