精英家教网 > 初中数学 > 题目详情
如图:抛物线y=ax2-4ax+m与x轴交于A、B两点,点A的坐标是(1,0),与y轴交于点C.
(1)求抛物线的对称轴和点B的坐标;
(2)过点C作CP⊥对称轴于点P,连接BC交对称轴于点D,连接AC、BP,且∠BPD=∠BCP,求抛物线的解析式;
(3)在(2)的条件下,设抛物线的顶点为G,连接BG、CG、求△BCG的面积.
(1)对称轴是x=-
b
2a
=-
-4a
2a
=2,…(2分)
∵点A(1,0)且点A、B关于x=2对称,
∴点B(3,0);…(4分)

(2)点A(1,0),B(3,0),
∴AB=2,
∵CP⊥对称轴于P,
∴CPAB,
∵对称轴是x=2,
∴ABCP且AB=CP,
∴四边形ABPC是平行四边形,…(5分)
设点C(0,x)(x<0),
在Rt△AOC中,AC=
x2+1

∴BP=
x2+1

在Rt△BOC中,BC=
x2+9

BD
BC
=
BE
BO
=
1
3

∴BD=
1
3
x2+9

∵∠BPD=∠BCP且∠PBD=∠CBP,
∴△BPD△BCP,…(7分)
∴BP2=BD•BC,
(
x2+1
)2=
1
3
x2+9
x2+9

x2+1=
1
3
(x2+9)

∴x1=
3
,x2=-
3

∵点C在y轴的负半轴上,
∴点C(0,-
3
),…(8分)
∴y=ax2-4ax-
3

∵过点(1,0),
∴a-4a-
3
=0,
解得:a=-
3
3

∴解析式是:y=-
3
3
x2+
4
3
3
x-
3
;…(9分)

(3)当x=2时,y=
3
3

顶点坐标G是(2,
3
3
),…(10分)
设CG的解析式是:y=kx+b,
∵过点(0,-
3
)(2,
3
3
),
b=-
3
k=
2
3
3

∴y=
2
3
3
x-
3
,…(11分)
设CG与x轴的交点为H,
令y=0,则
2
3
3
x-
3
=0,
得x=
3
2

即H(
3
2
,0),…(11分)
∴BH=3-
3
2
=
3
2

∴S△BCG=S△BHG+S△BHC=
1
2
×
3
2
×
3
3
+
1
2
×
3
2
×|-
3
|
=
3
4
+
3
3
4
=
3
…(13分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点A为y轴正半轴上一点,A,B两点关于x轴对称,过点A任作直线交抛物线y=
2
3
x2
于P,Q两点.
(1)求证:∠ABP=∠ABQ;
(2)若点A的坐标为(0,1),且∠PBQ=60°,试求所有满足条件的直线PQ的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中:已知抛物线y=-
1
2
x2+(m2-m-
5
2
)x+
1
3
(5m+8)
的对称轴为x=-
1
2
,设抛物线与y轴交于A点,与x轴交于B、C两点(B点在C点的左边),锐角△ABC的高BE交AO于点H.
(1)求抛物线的解析式;
(2)在(1)中的抛物线上是否存在点P,使BP将△ABH的面积分成1:3两部分?如果存在,求出P点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c的对称轴为直线x=1,与x轴交于A、B两点,与y轴交于点C,其中A(-1,0)、C(0,3).
(1)求此抛物线的解析式;
(2)若此抛物线的顶点为P,将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO′C′.
①当O′C′CP时,求α的大小;
②△BOC在第一象限内旋转的过程中,当旋转后的△BO′C′有一边与BP重合时,求△BO′C′不在BP上的顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,OA=OC,AB=4,tan∠BCO=
1
5
,二次函数y=ax2+bx+c图象经过A、B、C三点.
(1)求A,B,C三点的坐标;
(2)求二次函数的解析式;
(3)求过点A、B和抛物线顶点D的圆的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

市“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如下图所示的一次函数关系.
(1)试求出y与x的函数关系式;
(2)设“健益”超市销售该绿色食品每天获得利润为P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
(3)根据市场调查,该绿色食品每天可获利润不超过4480元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围(直接写出).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,BC是⊙O的直径,点A在圆上,且AB=AC=4.P为AB上一点,过P作PE⊥AB分别交BC、OA于E、F.
(1)设AP=1,求△OEF的面积;
(2)设AP=a(0<a<2),△APF、△OEF的面积分别记为S1、S2
①若S1=S2,求a的值;
②若S=S1+S2,是否存在一个实数a,使S<
15
3
?若存在,求出一个a的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形OABC中,ABOC,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点B的坐标为(2,2
3
),∠BCO=60°,OH⊥BC,垂足为H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为ts.
(1)求OH的长;
(2)若△OPQ的面积为S(平方单位),求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用长为100cm的铁丝做一个矩形框子.
(1)能做成矩形框的面积为800cm2吗?如果能求出长和宽,如果不能请说明理由.
(2)请说明能围成的矩形最大面积是多少?为什么?

查看答案和解析>>

同步练习册答案