(本题7分)如图,等腰直角△ABC中,∠ABC=90°,点D在AC上, 将△ABD绕顶点B沿顺时针方向旋90°后得到△CBE.
⑴求∠DCE的度数;
⑵当AB=4,AD:DC=1: 3时,求DE的长.
解:(1)∵△CBE是由△ABD旋转得到的,∴△ABD≌△CBE,…………1分
∴∠A=∠BCE=45°,……………………………………………………………2分
∴∠DCE=∠DCB+∠BCE=90° ………………………………………………3分
(2)∵在等腰直角三角形ABC中,∵AB=4,∴AC=4……………………4分
又∵AD︰DC=1︰3,∴AD=,DC=3,…………………………………………5分
由(1)知AD=CE且∠DCE=90°, ………………………………………………6分
∴DE=DC+CE=2+18=20,∴DE=2 …………………………………7分
【解析】略
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011-2012年江苏省江阴初级中学九年级上学期期中考试数学卷 题型:解答题
(本题8分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为()cm,正六边形的边长为()cm.求这两段铁丝的总长
查看答案和解析>>
科目:初中数学 来源:2012年河南省中考模拟试题数学卷 题型:解答题
(本题8分)如图,△ABC中,AB=AC,过点A作GE∥BC,角平分线BD、CF相交于点H,它们的延长线分别交GE于点E、G.试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.
查看答案和解析>>
科目:初中数学 来源:2013届浙江省杭州市萧山区临浦片八年级上学期期中质量检测数学卷 题型:解答题
(本题12分)如图,点O是等边△ABC内一点,D是△ABC外的一点, ∠AOB= 110°,
∠BOC= ,△BOC ≌△ADC,∠OCD=60°,连接OD。
(1)求证:△OCD是等边三角形;
(2)当=150°时,试判断△AOD 的形状,并说明理由;
(3)探究:当为多少度时,△AOD是等腰三角形。
查看答案和解析>>
科目:初中数学 来源:2011届山东省滨州市滨城区九年级第一学期期中学业水平测试数学卷 题型:解答题
(本题12分)如图,两个同样大小的等边△ABC和△ACD,边长为a,它们拼成一个菱形ABCD,另一个足够大的等边△AEF绕点A旋转,AE与BC相交于点M,AF与CD相交于点N。
1.(1)证明:∠DAN=∠CAM;
2.(2)求四边形AMCN的面积;
3.(3)探索△AMN何时面积最小,并写出这个最小面积的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com