精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴、y轴于A、B两点.过点A的直线交y轴正半轴于点C,且点C为线段OB的中点.
(1)求直线AC的表达式;
(2)如果四边形ACPB是平行四边形,求点P的坐标.

解:(1)∵函数y=2x+12的图象分别交x轴、y轴于A、B两点.
∴A(-6,0),B(0,12).
∵点C为线段OB的中点.∴C(0,6).
设直线AC的表达式为y=kx+b.

解得:
故直线AC的表达式为y=x+6.

(2)解法一:∵四边形ACPB是平行四边形.
∴PC=AB且PC∥AB,PB=AC且PB∥AC.
如图1,过点P作y轴的垂线,垂足为Q.
可证得△PQB≌△AOC.
∴PQ=AO=6,BQ=CO=6.
∴QO=QB+OB=18.
∴P(6,18).
解法二:如图2,∵四边形ACPB是平行四边形.
∴PC∥AB.
∵C(0,6).
∴直线CP的解析式为y=2x+6.
设点P(x,2x+6).
,可得x=±6(负值舍去).
∴P(6,18).
分析:(1)根据直线AB的解析式求得点A、B的坐标,然后由已知条件“点C为线段OB的中点”求得点C的坐标;最后,利用待定系数法求直线AC的关系式;
(2)解法一:如图1,作辅助线PQ构建全等三角形△PQB≌△AOC,然后根据全等三角形的对应边相等、线段间的和差关系推知PQ、OQ的长度,即点P的坐标;
解法二:如图2,根据平行四边形的对边相互平行的性质,利用待定系数法求得直线PC的方程y=2x+6,故设点P(x,2x+6).然后两点间的距离公式列出关于x的方程,通过解方程即可求得x的值.
点评:本题考查了一次函数综合题.解答(2)题时,注意“数形结合”数学思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案