精英家教网 > 初中数学 > 题目详情
12.计算:(1)$\sqrt{16}$+$\root{3}{27}$(2)$\sqrt{(-2)^{2}}$+$\root{3}{-8}$.

分析 (1)首先计算开方,然后计算加法,求出算式的值是多少即可.
(2)首先计算开方,然后计算加法,求出算式的值是多少即可.

解答 解:(1)$\sqrt{16}$+$\root{3}{27}$
=4+3
=7

(2)$\sqrt{(-2)^{2}}$+$\root{3}{-8}$
=2-2
=0

点评 此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,已知直线AB与CD相交于点O,OE是∠BOD的平分线,EO⊥FO于O,若∠BOE=20°.
(1)求∠AOC的度数;
(2)求∠COF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某社区调查社区居民双休日的学习状况,采取下列调查方式:①从一幢高层住宅楼中选取200名居民;②从不同住层楼中随机选取200名居民;③选取社区内的200名在校学生.

(1)上述调查方式最合理的是②(填序号);
(2)将最合理的调查方式得到的数据制成扇形统计图(如图(1))和频数分布直方图(如图(2)).
①请补全频数分布直方图(直接画在图(2)中);
②在这次调查中,200名居民中,“在家学习”的有24人;
 ③在图(1)中,“不学习”这一扇形的圆心角是120;
(3)请估计该社区1000名居民中双休日学习时间不少于4h的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,正方形ABCD的对角线AC、BD相交于点O,延长CB至点F,使CF=CA,∠ACF的平分线分别交AF、AB、BD于点E、N、M,连接EO.
(1)已知BD=$\sqrt{2}$,求正方形ABCD的边长;
(2)猜想线段EM与CN的数量关系并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.实践与探索
(1)填空:$\sqrt{{3}^{2}}$=3; $\sqrt{(-5)^{2}}$=5;
(2)观察第(1)的结果填空:当a≥0时$\sqrt{{a}^{2}}$=a;当a<0时,$\sqrt{{a}^{2}}$=-a;
(3)利用你总结的规律计算:$\sqrt{(x-2)^{2}}$+$\sqrt{(x-3)^{2}}$,其中2<x<3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在Rt△ABC中,BD平分∠ABC,DE⊥AB于E,则:
(1)哪条线段与DE相等?为什么?
(2)若BC=8,AC=6,求BE,AE的长和△AED的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,点D为AP的中点,连结AC.
求证:(1)∠P=∠BAC
(2)直线CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.完成证明并写出推理根据:
已知,如图,∠1=132°,∠ACB=48°,∠2=∠3,FH⊥AB于H.
求证:CD⊥AB.
证明:∵∠1=132°,∠ACB=48°,
∴∠1+∠ACB=180°
∴DE∥BC
∴∠2=∠DCB(两直线平行,内错角相等)
又∵∠2=∠3
∴∠3=∠DCB
∴HF∥CD(同位角相等,两直线平行)
∴∠CDB=∠FHB.(两直线平行,同位角相等)
又∵FH⊥AB,
∴∠FHB=90°(垂直定义)
∴∠CDB=90°.
∴CD⊥AB.(垂直定义)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知二次函数y=ax2+bx-2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.

(1)求实数a、b的值;
(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向点B运动,点F以每秒$\sqrt{5}$个单位长度的速度沿线段AC方向运动.当点F停止运动时,点E随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.

查看答案和解析>>

同步练习册答案