精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.
(1)如果AB=6,BC=8,DF=21,求DE的长;
(2)如果DE:DF=2:5,AD=9,CF=14,求BE的长.
分析:(1)根据三条平行线截两条直线,所得的对应线段成比例可得
DE
DF
=
AB
AC
,再由AB=6,BC=8,DF=21即可求出DE的长.
(2)过点D作DG∥AC,交BE于点H,交CF于点G,运用比例关系求出HE及HB的长,然后即可得出BE的长.
解答:精英家教网解:(1)∵AD∥BE∥CF,
DE
DF
=
AB
AC

∵AB=6,BC=8,DF=21,
DE
21
=
6
6+8

∴DE=9.

(2)过点D作DG∥AC,交BE于点H,交CF于点G,
则CG=BH=AD=9,
∴GF=14-9=5,
∵HE∥GF,
HE
GF
=
DE
DF

∵DE:DF=2:5,GF=5,
HE
5
=
2
5

∴HE=2,
∴BE=9+2=11.
点评:本题考查平行线分线段成比例的知识,综合性较强,关键是掌握三条平行线截两条直线,所得的对应线段成比例.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,已知AD∥BE,∠CDE=∠C,试说明∠A=∠E的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD∥BE∥CF,BC=3,DE:EF=2:1,则AC=
9
9

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD⊥BE,垂足C是BE的中点,AB=DE.求证:AB∥DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

填写理由或步骤
如图,已知AD∥BE,∠A=∠E
因为AD∥BE
(已知)
(已知)

所以∠A+
∠ABE
∠ABE
=180°
(两直线平行,同旁内角互补)
(两直线平行,同旁内角互补)

因为∠A=∠E(已知)
所以
∠ABE
∠ABE
+
∠E
∠E
=180°
(等量代换)
(等量代换)

所以DE∥AC
(同旁内角互补,两直线平行)
(同旁内角互补,两直线平行)

所以∠1=
∠2.(两直线平行,内错角相等)
∠2.(两直线平行,内错角相等)

查看答案和解析>>

同步练习册答案