8£®Èçͼ£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ®Å×ÎïÏßy=-$\frac{1}{4}{x}^{2}$+$\frac{1}{2}$x+2ÓëxÖá½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬µãP´ÓB³ö·¢£®ÑØÉäÏßBA·½ÏòÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÔÈËÙÔ˶¯£®¹ýµãP×÷PQ¡ÍxÖᣮֱÏßPQ·Ö±ðÓëÖ±ÏßBC¡¢Å×ÎïÏß½»ÓÚµãQ¡¢K£®
£¨1£©ÇóÏ߶ÎKQµÄ³¤¶ÈdÓëµãPÔ˶¯Ê±¼ätµÄº¯Êý½âÎöʽ£®
£¨2£©Çó¡÷CKQµÄÃæ»ýS¹ØÓÚµãPÔ˶¯Ê±¼ätµÄº¯Êý½âÎöʽ£®

·ÖÎö £¨1£©ÇóµÃÖ±ÏßBCµÄ½âÎöʽ£¬¸ù¾ÝÌâÒâµÃµ½Q£¨t£¬-$\frac{1}{2}$t+2£©£¬K£¨t£¬-$\frac{1}{4}$t2+$\frac{1}{2}t$+2£©£¬È»ºó·ÖÁ½ÖÖÇé¿öÌÖÂÛ¼´¿ÉÇóµÃ£»
£¨2£©¸ù¾ÝÌâÒâµÃµ½Cµ½Ö±ÏßPQµÄ¾àÀ룬Ȼºó¸ù¾ÝÁ½ÖÖÇé¿öÌÖÂÛ¼´¿ÉÇóµÃ£®

½â´ð ½â£ºy=-$\frac{1}{4}{x}^{2}$+$\frac{1}{2}$x+2£¬µ±x=0ʱ£¬½âµÃ£ºy=2£¬ËùÒÔOC=2£»
µ±y=0ʱ£¬0=-$\frac{1}{4}{x}^{2}$+$\frac{1}{2}$x+2£¬½âµÃ£ºx1=-2£¬x2=4£¬ËùÒÔ£ºOA=2£¬OB=4£¬
ËùÒÔ£ºA£¨-2£¬0£©£¬B£¨4£¬0£©£¬C£¨0£¬2£©£¬
£¨1£©ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+b£¬
´úÈëB¡¢CµÄ×ø±êµÃ£º$\left\{\begin{array}{l}{4k+b=0}\\{b=2}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=2}\end{array}\right.$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=-$\frac{1}{2}$x+2£¬
¡ßPQ¡ÍxÖᣬ
Ô˶¯tÃëºó£¬Q£¨t£¬-$\frac{1}{2}$t+2£©£¬K£¨t£¬-$\frac{1}{4}$t2+$\frac{1}{2}t$+2£©£¬
¡àµ±0¡Üt£¼4ʱ£¬d=£¨-$\frac{1}{4}$t2+$\frac{1}{2}t$+2£©-£¨-$\frac{1}{2}$t+2£©=-$\frac{1}{4}$t2+t£»
µ±t¡Ý4ʱ£¬d=£¨-$\frac{1}{2}$t+2£©-£¨-$\frac{1}{4}$t2+$\frac{1}{2}t$+2£©=$\frac{1}{4}$t2-t£»
¹ÊÏ߶ÎKQµÄ³¤¶ÈdÓëµãPÔ˶¯Ê±¼ätµÄº¯Êý½âÎöʽΪd=$\left\{\begin{array}{l}{-\frac{1}{4}{t}^{2}+t£¨0¡Üt£¼4£©}\\{{\frac{1}{4}t}^{2}-t£¨t¡Ý4£©}\end{array}\right.$£»
£¨2£©µ±0¡Üt£¼4ʱ£¬Cµ½Ö±ÏßPQµÄ¾àÀëΪ£¨4-t£©£¬
¡àS=d£¨4-t£©=£¨-$\frac{1}{4}$t2+t£©£¨4-t£©=$\frac{1}{4}$t3-2t2+4t£»
µ±t¡Ý4ʱ£¬Cµ½Ö±ÏßPQµÄ¾àÀëΪ£¨t-4£©£¬
S=d£¨t-4£©=£¨-$\frac{1}{4}$t2+t£©£¨t-4£©=-$\frac{1}{4}$t3+2t2-4t£»
¹Ê¡÷CKQµÄÃæ»ýS¹ØÓÚµãPÔ˶¯Ê±¼ätµÄº¯Êý½âÎöʽΪS=$\left\{\begin{array}{l}{\frac{1}{4}{t}^{3}-2{t}^{2}+4t£¨0¡Üt£¼4£©}\\{-\frac{1}{4}{t}^{3}+2{t}^{2}-4t£¨t¡Ý4£©}\end{array}\right.$£®

µãÆÀ ±¾Ì⿼²éÁËÅ×ÎïÏßÓëxÖáµÄ½»µã£¬´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ£¬·ÖÀàÌÖÂÛ˼ÏëµÄÔËÓÃÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Ò»¸ö³¤·½ÌåµÄ³¤Îª8¡Á105cm£¬¿íΪ5¡Á106cm£¬¸ßΪ9¡Á108cm£¬Ç󳤷½ÌåµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãAÊÇyÖáÉϵÄÒ»µã£¬µãBÓëµãCÔÚxÖáÉÏÇÒ¹ØÓÚÔ­µã¶Ô³Æ£¬ÈôµãA£¨0£¬3£©£¬µãB£¨-4£¬0£©£®
£¨1£©ÔÚͼÖл­³ö¡÷ABC²¢Çó³ö¡÷ABCÈý±ßµÄ³¤£»
£¨2£©Ò»¶¯µãPÒÔ1cm/sµÄËٶȴӵãBÏòµãCÔ˶¯£¨Pµã²»Ô˶¯µ½Cµã£©£¬ÉèµãPÔ˶¯µÄʱ¼äΪt£¨µ¥Î»£ºs£©£®
¢Ùд³ö¡÷APCµÄÃæ»ýS¹ØÓÚtµÄº¯Êý½âÎöʽ£¬²¢Ð´³ö×Ô±äÁ¿tµÄÈ¡Öµ·¶Î§£»
¢Úµ±tΪºÎֵʱ£¬¡÷APBΪµÈÑüÈý½ÇÐΣ¿²¢Ð´³ö´ËʱµãPµÄ×ø±ê£»
¢Ûµ±tΪºÎֵʱPAÓë¡÷ABCµÄÒ»Ñü´¹Ö±£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬BA=BC£¬¡ÏABC=120¡ã£¬ABµÄ´¹Ö±Æ½·ÖÏßEF½»ABÓÚE£¬½»ACÓÚF£¬ÇóÖ¤£ºAF=$\frac{1}{3}$AC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÔÚÈñ½ÇÈý½ÇÐÎABCÖУ¬sinB=$\frac{3}{5}$£¬tanC=3£¬ÇÒS¡÷ABC=20£¬ÇóBCµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÔÚʵÊý·¶Î§Äڽⷽ³Ì$\sqrt{¦Ð-x}$+$\sqrt{x-¦Ð}$+|1-2y|=5.28£¬Ôòx=¦Ð£¬y=2.14»ò-3.14£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®¼ÆË㣺£¨-4.2£©+5.7+£¨-8.4£©+10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®¼ÆË㣺
£¨1£©$\frac{1}{\sqrt{2}-\sqrt{3}}$+4¡Á$\frac{1}{2\sqrt{2}}$-$\sqrt{£¨\sqrt{3}-2£©^{2}}$
£¨2£©$\sqrt{£¨-2£©^{2}}$+|1-$\sqrt{2}$|+$\sqrt{3}$-$\frac{1}{\sqrt{3}-\sqrt{2}}$
£¨3£©$\sqrt{12}$+$\frac{1}{2-\sqrt{3}}$-£¨2+$\sqrt{3}$£©2
£¨4£©£¨8-2$\sqrt{15}$£©£¨$\sqrt{5}$+$\sqrt{3}$£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªa£¬b»¥ÎªÏà·´Êý£¬c£¬d»¥Îªµ¹Êý£¬xµÄµ¹ÊýµÈÓÚ-$\frac{1}{2}$£¬ÊÔÇóx2-£¨a+b+cd£©x+£¨a+b£©2015+£¨-cd£©2014µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸