精英家教网 > 初中数学 > 题目详情
二次函数图像的最低点坐标是      
(0,-3)

试题分析:由二次函数图像可知,该抛物线的开口向上,所以最低点在对称轴上,因对称轴为y轴,所以当x=0,y=-3,所以最低点坐标是(0,-3).
点评:该题是常考题,主要考查学生对二次函数解析式和抛物线图像理解,建议学生通过画图直观理解问题。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg)
10
11
13
销售量y(kg)
 
 
 
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线 经过A(2,0). 设顶点为点P,与x轴的另一交点为点B

(1)求b的值和点PB的坐标;
(2)如图,在直线上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)在轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在△ABC中,∠A = 90°,,经过这个三角形重心的直线DE // BC,分别交边ABAC于点D和点EP是线段DE上的一个动点,过点P分别作PMBCPFABPGAC,垂足分别为点MFG.设BM = x,四边形AFPG的面积为y

(1)求PM的长;
(2)求y关于x的函数解析式,并写出它的定义域;
(3)联结MFMG,当△PMF与△PMG相似时,求BM的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y 轴交于C点,且A(一1,0).

(1)求抛物线的解析式及顶点D的坐标;
(2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数yax2bx+c(a≠0)的图象如图,则下列结论中正确的是
A.ac>0            B.当x>1时,yx的增大而增大
C.2ab=1          D.方程ax2bx+c=0有一个根是x=3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①是矩形包书纸的示意图,虚线是折痕,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.

(1)现有一本书长为25cm,宽为20cm,厚度是2cm,如果按照如图①的包书方式,并且折叠进去的宽度是3cm,则需要书包纸的长和宽分别为多少?(请直接写出答案).
(2)已知数学课本长为26 cm,宽为18.5cm,厚为1cm,小明用一张面积为1260cm2的矩形书包纸按如图①包好了这本书,求折进去的宽度.
(3)如图②,矩形ABCD是一张一个角(△AEF)被污损的书包纸,已知AB=30,BC=50,AE=12,AF=16,要使用没有污损的部分包一本长为19,宽为16,厚为6的字典,小红认为只要按如图②的剪裁方式剪出一张面积最大的矩形PGCH就能包好这本字典. 设PM=x,矩形PGCH的面积为y,当x取何值时y最大?并由此判断小红的想法是否可行.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,直线交x轴于点B,交y轴于点C,点A为x轴正半轴上一点,AO=CO,△ABC的面积为12.

(1)求b的值;
(2)若点P是线段AB中垂线上的点,是否存在这样的点P,使△PBC成为直角三角形.若存在,试直接写出所有符合条件的点P的坐标;若不存在,试说明理由;
(3)点Q为线段AB上一个动点(点Q与点A、B不重合),QE∥AC,交BC于点E,以QE为边,在点B的异侧作正方形QEFG.设AQ=m,△ABC与正方形QEFG的重叠部分的面积为S,试求S与m之间的函数关系式,并写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数的图象如图所示,其顶点坐标为M(1,-4).

(1)求二次函数的解析式;
(2)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线与这个新图象有两个公共点时,求的取值范围.

查看答案和解析>>

同步练习册答案