【题目】在一个不透明的口袋中放入个大小形状几乎完全相同实验用的鸡蛋,鸡蛋的质量有微小的差距(用手感觉不到差异),质量分别为、、克,已知随机的摸出一个鸡蛋,摸到克和克的鸡蛋的概率是相等的.
(1)求这四个鸡蛋质量的众数和中位数
(2)小明做实验需要拿走一个鸡蛋,芳芳在小明拿走后从剩下的三个鸡蛋中随机的拿走一个
①通过计算分析小明拿走一个鸡蛋后,剩下的三个鸡蛋质量的中位数是多少?
②假设小明拿走的鸡蛋质量为克,芳芳随机的拿出一个鸡蛋后又放回,之后再随机的拿出一个鸡蛋,请用树状图求芳芳两次拿到都是克的鸡蛋的概率?
【答案】(1)因此鸡蛋质量的众数为,中位数也是.(2)①;②
【解析】
(1)因为个鸡蛋有三个质量数,所以必然有两个鸡蛋的质量是相等的,又根据摸到克的鸡蛋和克的鸡蛋概率相等,从而可得答案,
(2)①若小明分别拿走的是不同的鸡蛋,分析剩下的鸡蛋,可得到答案,
②利用树状图得到两次拿走50克鸡蛋的机会,从而可得答案.
解(1)因为个鸡蛋有三个质量数,所以必然有两个鸡蛋的质量是相等的,所以四个鸡蛋的质量可能为、、、;、、、;、、、.又根据摸到克的鸡蛋和克的鸡蛋概率相等,
我们从前面数据分析可知,摸到鸡蛋的的概率分别是,,,
所以我们知道四个鸡蛋的质量数为、、、;
因此鸡蛋质量的众数为,中位数也是.
(2)①若小明拿走的是49,剩下的是,,,此时中位数是50,
若小明拿走的是50,剩下的是49、,,此时中位数是50,
若小明拿走的是51,剩下的是49,,,此时中位数是50,
所以小明拿走一个鸡蛋,不管小明拿走的鸡蛋质量是多少,剩下鸡蛋的中位数都是;
②画树状图如下:
共有种情况:,;,;,;,;,;,;,;,,,.其中两次拿到克的情况有四种,所以两次都拿到克鸡蛋的概率为
科目:初中数学 来源: 题型:
【题目】如图,直升飞机在大桥AB上方C点处测得A,B两点的俯角分别为45°和31°.若飞机此时飞行高度CD为1205m,且点A,B,D在同一条直线上,求大桥AB的长.(精确到1m)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B两点,与y轴交于点C(0,3),点P是抛物线在第一象限上的一点,过点P作PH⊥x轴,垂足为H,交线段BC于点Q.
(1)求抛物线对应的函数表达式;
(2)当PQ=2QH时,求点P的坐标;
(3)当PH最大时,连接AP,AP与BC交于点D,点F是第一象限内一点,且∠AFC=45°,点G在抛物线上,直线FG、FC分别与直线PH交于点M、N.当三角形ABD相似三角形FMN时,求点G的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O过ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AD交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.
(1)求证:△ABH是等腰三角形;
(2)求证:直线PC是⊙O的切线;
(3)若AB=2,AD=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点在矩形的边上,,,连接,线段绕点旋转,得到线段,以线段为直径做.
(1)请说明点一定在上的理由,
(2)①点在上,为的直径,求证:点到的距离等于线段的长.
②当面积取得最大值时,求半径的长.
(3)当与矩形的边相切时,计算扇形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,是边上的中线,点为线段上一点(不与点、点重合),连接,作与的延长线交于点,与交于点,连接.
(1)求证:;
(2)求的度数;
(3)求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】星期天,小强去水库大坝游玩,他站在大坝上的A处,看到一棵大树的影子刚好落在坝底的B处(假设大树DE与地面垂直,点A与大树及其影子在同一平面内),此时太阳光与地面成60°角;在A处测得树顶D的俯角为15°.如图所示,已知斜坡AB的坡度为,AB为12米.请你帮助小强计算一下这颗大树的高度?(结果精确到0.1米.参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com