【题目】如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.AD的长是( )
A.5B.6C.7D.8
科目:初中数学 来源: 题型:
【题目】(问题提出)八年级上册课本中有这样一句话“两边和其中一边的对角分别相等的两个三角形不一定全等”,下面我们一起探究什么情况下全等?
(初步思考)我们不妨将文字语言转化成符号语言:在和中,,,.
(深入探究)
(1)当与是锐角时,和是否全等?若全等,请证明;若不全等,请举出反例;
(2)当与是直角时,和是否全等?若全等,直接说明理由,不需要证明;若不全等,请举出反例;
(3)当与是钝角时,和是否全等?若全等,请借助下图证明;若不全等,请举出反例.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出△ABC关于y轴的对称图形△A1B1C1;
(2)在y轴上求作一点P,使△PAC的周长最小,并直接写出P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象经过点A(﹣3,﹣2).
(1)求反比例函数的解析式;
(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.反比例函数y=是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com