精英家教网 > 初中数学 > 题目详情

【题目】如图1,是一建筑物造型的纵截面,曲线是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线是与水平线垂直的两根支柱,米,米,.

1)如图1,为了安全美观,准备拆除支柱,在水平线上另找一点作为地面上的支撑点,用固定材料连接,对抛物线造型进行支撑加固,用料最省时点之间的距离是_________.

2)如图2,在水平线上增添一张米长的椅子右侧),用固定材料连接,对抛物线造型进行支撑加固,用料最省时点之间的距离是_______________.

【答案】

【解析】

(1)以点O为原点,OC所在直线为y轴,垂直于OC的直线为x轴建立平面直角坐标系,利用待定系数法确定二次函数的解析式后延长BDM使MD=BD,连接AMOC于点P,则点P即为所求;利用待定系数法确定直线M'A'的解析式,从而求得点P′的坐标,从而求得OP之间的距离;

2)过点平行于轴且,作点关于轴的对称点,连接轴于点,则点即为所求.

1)如图建立平面直角坐标系(以点为原点,所在直线为轴,垂直于的直线为轴),延长使,连接于点,则点即为所求.

设抛物线的函数解析式为

由题意知旋转后点的坐标为.带入解析式得

抛物线的函数解析式为:

时,

的坐标为

的坐标为

代入求得直线的函数解析式为

代入,得

的坐标为

用料最省时,点之间的距离是.

2)过点平行于轴且,作点关于轴的对称点,连接轴于点,则点即为所求.

的坐标为

点坐标为

代入,的坐标求得直线的函数解析式为

代入,得

的坐标为

用料最省时,点之间的距离是.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):

组别

成绩分组

频数频率

频数

1

2

0.05

2

4

0.10

3

0.2

4

10

0.25

5

6

6

0.15

合计

40

1.00

根据表中提供的信息解答下列问题:

(1)频数分布表中的

(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为 ,72分及以上为及格,预计及格的人数约为 ,及格的百分比约为

(3)补充完整频数分布直方图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yxxb)﹣y轴相交于A点,与x轴相交于BC两点,且点C在点B的右侧,设抛物线的顶点为P

1)若点B与点C关于直线x1对称,求b的值;

2)若OBOA,求△BCP的面积;

3)当﹣1x1时,该抛物线上最高点与最低点纵坐标的差为h,求出hb的关系;若h有最大值或最小值,直接写出这个最大值或最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC为圆O的直径,弦AD的延长线与过点C的切线交于点BEBC中点,AC= BC=4.

1)求证:DE为圆O的切线;

2)求阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AG是∠PAQ的平分线,点EAQ上,以AE为直径的⊙0AG于点D,过点DAP的垂线,垂足为点C,交AQ于点B.

1)求证:直线BC是⊙O的切线;

2)若⊙O的半径为6AC=2CD,求BD的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在平面直角坐标系中,抛物线的对称轴为直线,将直线绕着点顺时针旋转的度数后与该抛物线交于两点(点在点的左侧),点是该抛物线上一点

1)若,求直线的函数表达式

2)若点将线段分成的两部分,求点的坐标

3)如图②,在(1)的条件下,若点轴左侧,过点作直线轴,点是直线上一点,且位于轴左侧,当以为顶点的三角形与相似时,求的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中有点和某一函数图象,过点轴的垂线,交图象于点,设点的纵坐标分别为.如果,那么称点为图象的上位点;如果,那么称点为图象的图上点;如果,那么称点为图象的下位点.

1)已知抛物线.

在点A(-10)B(0-2)C(23)中,是抛物线的上位点的是

如果点是直线的图上点,且为抛物线的上位点,求点的横坐标的取值范围;

2)将直线在直线下方的部分沿直线翻折,直线的其余部分保持不变,得到一个新的图象,记作图象.⊙的圆心轴上,半径为.如果在图象和⊙上分别存在点和点F,使得线段EF上同时存在图象的上位点,图上点和下位点,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数(x>0)(x>0)的图象分别是.设点P上,PAy轴交于点APBx轴,交于点BPAB的面积为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠ACD90°ACDCMN是过点A的直线,DBMN于点B

1)如图,求证:BD+ABBC

2)直线MN绕点A旋转,在旋转过程中,当∠BCD30°BD时,求BC的值.

查看答案和解析>>

同步练习册答案