D
分析:设⊙O与AB,AC,BC分别相切于点E,F,G,连接OE,OF,OG,则OE⊥AB.根据勾股定理得AB=10,再根据切线长定理得到AF=AE,CF=CG,从而得到四边形OFCG是正方形,根据正方形的性质得到设OF=x,则CF=CG=OF=x,AF=AE=6-x,BE=BG=8-x,建立方程求出x值,进而求出AE与DE的值,最后根据三角形函数的定义即可求出最后结果.
解答:过O点作OE⊥AB OF⊥AC OG⊥BC,
∴∠OGC=∠OFC=∠OED=90°,
∵∠C=90°,AC=6 BC=8,
∴AB=10
∵⊙O为△ABC的内切圆,
∴AF=AE,CF=CG (切线长相等)
∵∠C=90°,
∴四边形OFCG是矩形,
∵OG=OF,
∴四边形OFCG是正方形,
设OF=x,则CF=CG=OF=x,AF=AE=6-x,BE=BG=8-x,
∴6-x+8-x=10,
∴OF=2,
∴AE=4,
∵点D是斜边AB的中点,
∴AD=5,
∴DE=AD-AE=1,
∴tan∠ODA=
=2.
故选D.
点评:此题要能够根据切线长定理证明:作三角形的内切圆,其中的切线长等于切线长所在的两边和与对边差的一半;直角三角形内切圆的半径等于两条直角边的和与斜边的差的一半.