精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,点A、B坐标分别为(4,2)、(0,2),线段CD在于x轴上,CD=,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E、交OA于点G,连结CE交OA于点F.设运动时间为t,当E点到达A点时,停止所有运动.

(1)求线段CE的长;
(2)记S为RtΔCDE与ΔABO的重叠部分面积,试写出S关于t的函数关系式及t的取值范围;
(3)连结DF,
①当t取何值时,有?
②直接写出ΔCDF的外接圆与OA相切时t的值.
(1)线段CE的长为
(2)S=﹣t)2,t的取值范围为:0≤t≤
(3)①当t=时,DF=CD;②ΔCDF的外接圆与OA相切时t=

试题分析:(1)直接根据勾股定理求出CE的长即可;
(2)作FH⊥CD于H.,由AB∥OD,DE⊥OD,OB⊥OD可知四边形ODEB是矩形,故可用t表示出AE及BE的长,由相似三角形的判定定理可得出△OCF∽△AEF,△ODG∽△AEG,由相似三角形的性质可用t表示出CF及EG的长,FH∥ED可求出HD的长,由三角形的面积公式可求出S与t的关系式;
(3)①由(2)知CF=t,当DF=CD时,作DK⊥CF于K,则CK=CF=t,CK=CDcos∠DCE,由此可得出t的值;
②先根据勾股定理求出OA的长,由(2)知HD=(5﹣t),由相似三角形的判定定理得出Rt△AOB∽Rt△OFH,可用t表示出OF的长,因为当△CDF的外接圆与OA相切时,则OF为切线,OD为割线,由切割线定理可知OF2=OC•OD,故可得出结论.
试题解析:(1)∵在Rt△CDE中,CD=,DE=2,
∴CE=
(2)如图1,作FH⊥CD于H.

∵AB∥OD,DE⊥OD,OB⊥OD,
∴四边形ODEB是矩形,
∴BE=OD,
∵OC=t,
∴BE=OD=OC+CD=t+
∴AE=AB﹣BE=4﹣(t+)=﹣t,
∵AB∥OD,
∴△OCF∽△AEF,△ODG∽△AEG,

又∵CF+EF=5,DG+EG=4,

∴CF=t,EG=
∴EF=CE﹣CF=5﹣t,
∵FH∥ED,
,即HD=•CD=﹣t),
∴S=EG•HD=××﹣t)=﹣t)2
t的取值范围为:0≤t≤
(3)①由(2)知CF=t,
如图2,当DF=CD时,如图作DK⊥CF于K,

则CK=CF=t,
∵CK=CDcos∠DCE,
t=3×
解得:t=
∴当t=时,DF=CD;
②∵点A,B坐标分别为(8,4),(0,4),
∴AB=8,OB=4,
∴OA==4
∵由(2)知HD=(5﹣t),
∴OH=t+3﹣(5﹣t)=
∵∠A+∠AOB=∠AOD+∠AOB=90°,
∴∠A=∠AOD,
∴Rt△AOB∽Rt△OFH,

解得OF=
∵当△CDF的外接圆与OA相切时,则OF为切线,OD为割线,
∴OF2=OC•OD,即(2=t(t+3),得t=
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC中,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.求证:△ACF∽△BEC;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且.

(1)求证:△CED∽△ACD;
(2)求证:.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6, ,则EC的长是(   )
A.4.5B.8 C.10.5 D.14

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AD,BE是两条中线,则S△EDC∶S△ABC= (  )
A.1∶2B.2∶3
C.1∶3D.1∶4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列多边形一定相似的为(    )
A.两个三角形B.两个四边形 C.两个正方形 D.两个平行四边形

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).

(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题中,正确的是(    )
A.如果一条直线截三角形两边的延长线所得的对应线段成比例,那么这条直线一定平行于三角形的第三边;
B.不同向量的单位向量的长度都相等,方向也都相同;
C.相似三角形的中线的比等于相似比;
D.一般来说,一条线段的黄金分割点有两个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平行四边形中,的中点,交于点,设△的面积为,△ 的面积为,则下列结论中正确的是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案