【题目】如图,在正方形内有一点满足,.连接、.
(1)求证:;
(2)求的度数.
【答案】(1)见解析;(2)15°
【解析】
(1)根据PB=PC得∠PBC=∠PCB,从而可得∠ABP=∠DCP,再利用SAS证明即可;
(2)由(1)得△PAD为等边三角形,可求得∠PAB=30°,∠PAC=∠PAD-∠CAD,因此可得结果.
解:(1)∵四边形ABCD为正方形,
∴∠ABC=∠DCB=90°,AB=CD,
∵BP=PC,
∴∠PBC=∠PCB,
∴∠ABP=∠DCP,
又∵AB=CD,BP=CP,
在△APB和△DPC中,
,
∴△APB≌△DPC(SAS);
(2)由(1)得AP=DP=AB=AD,
∴△PAD为等边三角形,
∴∠PAD=60°,∠PAB=30°,
在正方形ABCD中,∠BAC=∠DAC=45°,
∴∠PAC=∠PAD-∠CAD=60°-45°=15°.
科目:初中数学 来源: 题型:
【题目】如图,△ABC在直角坐标系中。
(1)请写出△ABC各点的坐标;
(2)求出△ABC的面积S△ABC;
(3)若把△ABC向上平移2个单位,再向右平移2个单位得△A1B1C1,在图中画出△A1B1C1,并写出△A1B1C1的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,正确的个数是 ( )
①若三条线段的比为1:1:,则它们组成一个等腰直角三角形;②两条对角线相等的平行四边形是矩形;③对角线互相垂直的四边形是菱形;④有两个角相等的梯形是等腰梯形;⑤一条直线与矩形的一组对边相交,必分矩形为两个直角梯形。
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E在以AB为直径的⊙O上,点C是 的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.
(1)求证:CD是⊙O的切线;
(2)若cos∠CAD= ,BF=15,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与直线交于,两点,点是抛物线上,之间的一个动点,过点分别作轴、轴的平行线与直线交于点,.
(1)求抛物线的解析式;
(2)若为的中点,求的长;
(3)如图,以,为边构造矩形,设点的坐标为,
①请求出,之间的关系式;②求出矩形的周长最大时,点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.
(1)求这种笔和本子的单价;
(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】题目:某校七年级学生乘车去参加社会实践活动,若每辆客车乘50人,还有12人不能上车;若每辆客车乘55人,则最后一辆空了8个座位,求该校租这种客车的辆数:
根据题意,小明、小红分别列出了尚不完整的方程如下:
小明列出不完整的方程为
小红列出不完整的方程为
(说明:其中“”表示运算符号,“”表示数字):
(1)小明所列方程中表示的意义是________________________;
小红所列方程中表示的意义是___________________________;
(2)选择两位同学的其中一位学生的做法,将其补充完整,并完整地解答这道题.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com