精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,在矩形ABCD中,对角线ACBD相交于点O,过点CBD的平行线,过点DAC的平行线,两线交于点P

求证:四边形CODP是菱形.

AD6AC10,求四边形CODP的面积.

【答案】①证明见解析;(2)S菱形CODP24.

【解析】

根据DPACCPBD,即可证出四边形CODP是平行四边形,由矩形的性质得出OC=OD,即可得出结论;

利用SCODS菱形CODP先求出SCOD,即可得.

证明:①∵DPACCPBD

∴四边形CODP是平行四边形,

∵四边形ABCD是矩形,

BDACODBDOCAC

ODOC

∴四边形CODP是菱形.

②∵AD6AC10

DC8

AOCO

SCODSADC××AD×CD12

∵四边形CODP是菱形,

SCODS菱形CODP12

S菱形CODP24

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在茶节期间,某茶商订购了甲种茶叶90吨,乙种茶叶80吨,准备用AB两种型号的货车共20辆运往外地.已知A型货车每辆运费为0.4万元,B型货车每辆运费为0.6万元.13分)

1)设A型货车安排x辆,总运费为y万元,写出yx的函数关系式;

2)若一辆A型货车可装甲种茶叶6吨,乙种茶叶2吨;一辆B型货车可装甲种茶叶3吨,乙种茶叶7吨.按此要求安排AB两种型号货车一次性运完这批茶叶,共有哪几种运输方案?

3)说明哪种方案运费最少?最少运费是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的弦,OP⊥OAAB于点P,过点B的直线交OP的延长线于点C,且CP=CB

1)求证:BC⊙O的切线;

2)若⊙O的半径为OP=1,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形AEHC是由三个全等矩形拼成的,AHBEBFDFDGCG分别交于点PQKMN.设△BPQ,△DKM,△CNH的面积依次为S1S2S3.若S1+S320,则S2的值为(  )

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴相交于原点和点,点在抛物线上.

1)求抛物线的表达式,并写出它的对称轴;

2)求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分)如图1,在Rt△ABC中,∠B=90°BC=2AB=8,点DE分别是边BCAC的中点,连接DE. △EDC绕点C按顺时针方向旋转,记旋转角为α.

1)问题发现

时,时,

2)拓展探究

试判断:当0°≤α360°时,的大小有无变化?请仅就图2的情况给出证明.

3)问题解决

△EDC旋转至ADE三点共线时,直接写出线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点延长线上一点,连接,过分别作,垂足为,交于点,作,垂足为,交于点

1)求证:

2)如图,点的延长线上,且,连接并延长交于点,求证:

3)在(2)的条件下,当时,请直接写出的值为____________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是矩形,连接AC,点E是边CB延长线上一点,CA=CE,连接AE,F是线段AE的中点,

(1)如图1,当AD=DC时,连接CFABM,求证:BM=BE;

(2)如图2,连接BDACO,连接DF分别交AB、ACG、H,连接GC,若∠FDB=30°,S四边形GBOH=,求线段GC的长.

查看答案和解析>>

同步练习册答案