精英家教网 > 初中数学 > 题目详情

如图,点O是正△ABC内一点,∠AOB=90°,∠BOC=α,将△BOC绕点C顺时针旋转60°得到△AEC,连接OE
(1)求证:△COE是正三角形;
(2)当α为何值时,AC⊥OE,并说明理由;
(3)探究是否存在α的值使得点O到正△ABC三个顶点的距离之比为数学公式?若存在请直接写出α的值,若不存在请说明理由.

解:(1)由题意得:△BOC≌△AEC
∴CO=CE,
∴∠COE=∠CEO,
∵∠OCE=60°,
∴∠COE=∠CEO=∠OCE=60°,
∴△COE是正三角形.

(2)当a=135°时,AC⊥OE,
理由如下:
∵△COE是正三角形,AC⊥OE
∴AC垂直平分OE,
∴AO=AE,
∴∠AOE=∠AEO,
∵∠AOB=90°,∠BOC=α,∠COE=60°,
∴∠AOE=210°-α,
∵∠AEO=∠AEC-60°=∠BOC-60°=α-60°
∴210°-α=α-60°,
解得α=135°,
所以当α=135°时,AC⊥OE;

(3)∵△COE是正三角形,将△BOC绕点C顺时针旋转60°得到△AEC,
∴AC=BC,EC=CO=EO,BO=AE,∠AEC=∠BOC,
当OE:AO:AE=1::2时,
∴∠AOE=90°,△AOE是直角三角形,
∴∠BOC=360°-90°-90°-60°=120°,
当EO:AE:AO=1::2时,
∴△AOE是直角三角形,tan∠EAO==
∴∠EAO=30°,∠AOE=60°,∠AEO=90°,
∴∠BOC=∠AEC=∠AEO+∠OEC=90°+60°=150°,
故当a=120°或150°时,
存在α的值使得点O到正△ABC三个顶点的距离之比为:
分析:(1)利用旋转的性质得出△BOC≌△AEC,进而得出∠COE=∠CEO=∠OCE=60°即可得出答案;
(2)根据∠AOB=90°,∠BOC=α,∠COE=60°,得出∠AOE=210°-α,再利用∠AEO=∠AEC-60°=∠BOC-60°得出α的度数即可;
(3)根据当OE:AO:AE=1::2时以及当OA:EO:AE=1::2时,由勾股定理的逆定理以及锐角三角形函数关系得出α的度数即可.
点评:此题主要考查了旋转的性质以及锐角三角函数关系和勾股定理的逆定理等知识,利用分类讨论的思想得出不同情况是此题的易错点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•房山区一模)已知:如图,点P是线段AB上的动点,分别以AP、BP为边向线段AB的同侧作正△APC和正△BPD,AD和BC交于点M.
(1)当△APC和△BPD面积之和最小时,直接写出AP:PB的值和∠AMC的度数;
(2)将点P在线段AB上随意固定,再把△BPD按顺时针方向绕点P旋转一个角度α,当α<60°时,旋转过程中,∠AMC的度数是否发生变化?证明你的结论.
(3)在第(2)小题给出的旋转过程中,若限定60°<α<120°,∠AMC的大小是否会发生变化?若变化,请写出∠AMC的度数变化范围;若不变化,请写出∠AMC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•青岛模拟)同学们已经认识了很多正多边形,现以正六边形为例再介绍与正多边形相关的几个概念.如正六边形ABCDEF各边对称轴的交点O,又称正六边形的中心,其中OA称正六边形的半径,通常用R表示,∠AOB称为中心角,显然.提出问题:正多边形内任意一点到各边距离之和与这个正多边形的半径R和中心角有什么关系?
探索发现:
(1)为了解决这个问题,我们不妨从最简单的正多边形--正三角形入手.
如图①,△ABC是正三角形,半径OA=R,∠AOB是中心角,P是△ABC内任意一点,P到△ABC各边距离分别为h1、h2、h3 ,确定h1+h2+h3的值与△ABC的半径R及中心角的关系.
解:设△ABC的边长是a,面积为S,显然S=
1
2
a(h1+h2+h3
O为△ABC的中心,连接OA、OB、OC,它们将△ABC分成三个全等的等腰三角形,过点O作OM⊥AB,垂足为M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如图②,五边形ABCDE是正五边形,半径是R,P是正五边形ABCDE内任意一点,P到五边形ABCDE各边距离分别为h1、h2、h3、h4、h5,参照(1)的探索过程,确定h1+h2+h3+h4+h5的值与正五边形ABCDE的半径R及中心角的关系.
(3)类比上述探索过程,直接填写结论
正六边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n边形(半径是R)内任意一点P到各边距离之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,点P是线段AB上的动点,分别以AP、BP为边向线段AB的同侧作正△APC和正△BPD,AD和BC交于点M.
(1)当△APC和△BPD面积之和最小时,直接写出AP:PB的值和∠AMC的度数;
(2)将点P在线段AB上随意固定,再把△BPD按顺时针方向绕点P旋转一个角度α,当α<60°时,旋转过程中,∠AMC的度数是否发生变化?证明你的结论.
(3)在第(2)小题给出的旋转过程中,若限定60°<α<120°,∠AMC的大小是否会发生变化?若变化,请写出∠AMC的度数变化范围;若不变化,请写出∠AMC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点P是线段AB上的动点,分别以AP、BP为边向线段AB的同侧作正△APC和正△BPD,AD和BC交于点M.

(1)当△APC和△BPD面积之和最小时,直接写出AP : PB的值和∠AMC的度数;

(2)将点P在线段AB上随意固定,再把△BPD按顺时针方向绕点P旋转一个角度α,当α<60°时,旋转过程中,∠AMC的度数是否发生变化?证明你的结论.

(3)在第(2)小题给出的旋转过程中,若限定60°<α<120°,∠AMC的大小是否会发生变化?若变化,请写出∠AMC的度数变化范围;若不变化,请写出∠AMC的度数.

查看答案和解析>>

科目:初中数学 来源:2012年北京市燕山区中考数学一模试卷(解析版) 题型:解答题

已知:如图,点P是线段AB上的动点,分别以AP、BP为边向线段AB的同侧作正△APC和正△BPD,AD和BC交于点M.
(1)当△APC和△BPD面积之和最小时,直接写出AP:PB的值和∠AMC的度数;
(2)将点P在线段AB上随意固定,再把△BPD按顺时针方向绕点P旋转一个角度α,当α<60°时,旋转过程中,∠AMC的度数是否发生变化?证明你的结论.
(3)在第(2)小题给出的旋转过程中,若限定60°<α<120°,∠AMC的大小是否会发生变化?若变化,请写出∠AMC的度数变化范围;若不变化,请写出∠AMC的度数.

查看答案和解析>>

同步练习册答案