精英家教网 > 初中数学 > 题目详情
如图已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).设抛物线的顶点为D,求解下列问题:
(1)求抛物线的解析式和D点的坐标;
(2)过点D作DFy轴,交直线BC于点F,求线段DF的长,并求△BCD的面积;
(3)能否在抛物线上找到一点Q,使△BDQ为直角三角形?若能找到,试写出Q点的坐标;若不能,请说明理由.
(1)设抛物线的解析式为y=a(x+1)(x-3),
把(0,3)代入,
解得a=-1,
解析式为y=-x2+2x+3,
则点D的坐标为(1,4),

(2)设直线BC的解析式为y=kx+3,把B(3,0)代入,
解得k=-1,所以F(1,2),
∴DF=4-2=2,
△BCD的面积=
1
2
×2×1+
1
2
×2×2=3


(3)①点C即在抛物线上,CD=
2
,BC=3
2
BD=2
5

∵CD2+BC2=20,BD2=20,
∴CD2+BC2=BD2
∴∠BCD=90°,
这时Q与C点重合点Q坐标为Q(0,3),
②如图②,若∠DBQ为90°,作QP⊥x轴于P,DH⊥x轴于H
可证Rt△DHBRt△BPQ,
DH
BP
=
HB
PQ

则点Q坐标(k,-k2+2k+3),
4
3-k
=
2
k2-2k-3

化简为2k2-3k-9=0,
即(k-3)(2k+3)=0,
解之为k=3或k=-
3
2

k=-
3
2
得Q坐标:Q(-
3
2
,-
9
4
)

③若∠BDQ为90°,
如图③,延长DQ交y轴于M,
作DE⊥y轴于E,DH⊥x轴于H,
可证明△DEM△DHB,
DE
DH
=
EM
HB

1
4
=
EM
2

EM=
1
2

∵点M的坐标为(0,
7
2
)
,DM所在的直线方程为y=
1
2
x+
7
2

y=
1
2
x+
7
2
与y=-x2+2x+3的解为x=
1
2

得交点坐标Q为(
1
2
15
4
)

即满足题意的Q点有三个,(0,3),(-
3
2
,-
9
4
),(
1
2
15
4
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只.乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个.
请你根据提供的信息说明:
(1)第2年全县鱼池的个数及全县出产的鳗鱼总数;
(2)第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?请说明理由;
(3)哪一年(取整数)的规律(即总产量)最大?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.
(1)求这个二次函数的解析式;
(2)若点C的坐标为(4,0),连接BC,过点A作AE⊥BC,垂足为点E.当点D在直线AE上,且满足DE=1时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,O是坐标原点,A(3,0)、B(m,
6
5
)是以OA为直径的⊙M上的两点,且tan∠AOB=
1
2
,BH⊥x轴,垂足为H
(1)求H点的坐标;
(2)求图象经过A、B、O三点的二次函数的解析式;
(3)设点C为(2)中的二次函数图象的顶点,问经过B、C两点的直线是否与⊙M相切,请说明理由.
注:抛物线y=ax2+bx+c(c≠0)的顶点为(-
b
2a
4ac-b2
4a
)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+(
4
3
+3a)x+4与x轴交于A、B两点,与y轴交于点C.是否存在实数a,使得△ABC为直角三角形?若存在,请求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

竖直向上发射物体的高度h(m)满足关系式h=-5t2+v0•t,其中t(s)是物体运动的时间,v0(m/s)是物体被发射时的速度.某公园计划设计园内喷泉,喷水的最大高度要求达到15m,那么喷水的速度应该达到多少?(结果精确到0.01m/s)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙M是以点M(4,0)为圆心,5个单位长度为半径的圆.⊙M与x轴交于点A、B(A在B的左侧),⊙M与y轴的正半轴交于点C.
求:(1)点A、B、C的坐标;
(2)经过点A、B、C三点的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-2ax与直线l:y=ax(a>0)的交点除了原点O外,还相交于另一点A.
(1)分别求出这个抛物线的顶点、点A的坐标(可用含a的式子表示);
(2)将抛物线y=ax2-2ax沿着x轴对折(翻转180°)后,得到的图象叫做“新抛物线”,则:①当a=1时,求这个“新抛物线”的解析式,并判断这个“新抛物线”的顶点是否在直线l上;②在①的条件下,“新抛物线”上是否存在一点P,使点P到直线l的距离等于线段OA的
1
24
?若存在,请直接写出满足条件的点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)
项目
类别
年固定
成本
每件产品
成本
每件产品
销售价
每年最多可
生产的件数
A产品20m10200
B产品40818120
其中年固定成本与年生产的件数无关,m为待定常数,其值由生产A产品的原材料价格决定,预计6≤m≤8.另外,年销售x件B产品时需上交0.05x2万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系并指明其自变量取值范围;
(2)如何投资才可获得最大年利润?请你做出规划.

查看答案和解析>>

同步练习册答案