精英家教网 > 初中数学 > 题目详情
如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.
(1)证明:直线PB是⊙O的切线;
(2)探究线段PO与线段BC之间的数量关系,并加以证明.
分析:(1)连接OB.欲证明直线PB是⊙O的切线,只需证明OB⊥PB即可;
(2)根据(1)中全等三角形(△POB≌△POA)的对应边相等推知PB=PA,由已知条件“BD=2PA”、等量代换可以求得BD=2PB;然后由相似三角形(△DBC∽△DPO)的对应边成比例可以求得
BC
PO
=
BD
PD
=
2
3
,从而解得2PO=3BC.
解答:(1)证明:连接OB.
∵BC∥OP,
∴∠BCO=∠POA,∠CBO=∠POB.(2分)
又∵OC=OB,
∴∠BCO=∠CBO,
∴∠POB=∠POA.(3分)
又∵PO=PO,OB=OA,
∴△POB≌△POA,(4分)
∴∠PBO=∠PAO=90°,
∴PB是⊙O的切线(5分)

(2)2PO=3BC(写PO=
3
2
BC
亦可).(5分)
证明:∵△POB≌△POA,
∴PB=PA.
∵BD=2PA,
∴BD=2PB.
∵BC∥PO,
∴△DBC∽△DPO.(8分)
BC
PO
=
BD
PD
=
2
3
(相似三角形的对应边成比例),
∴2PO=3BC.(10分)
注:开始没有写出判断结论,证明正确也给满分、
点评:本题考查了切线的判定与性质.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.精英家教网
(1)证明:直线PB是⊙O的切线;
(2)探究线段PO与线段BC之间的数量关系,并加以证明;
(3)求sin∠OPA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•雨花台区一模)如图,已知,AC是⊙O的直径,B是圆上一点,连接AB、OB、CB,若∠A=30°,AB=3cm,则图中阴影部分的面积为
π
π
cm2(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.
(1)证明:直线PB是⊙O的切线;
(2)探究线段PO与线段BC之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源:第3章《圆》中考题集(50):3.2 点、直线与圆的位置关系,圆的切线(解析版) 题型:解答题

如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.
(1)证明:直线PB是⊙O的切线;
(2)探究线段PO与线段BC之间的数量关系,并加以证明;
(3)求sin∠OPA的值.

查看答案和解析>>

同步练习册答案