精英家教网 > 初中数学 > 题目详情
如图,已知等边△ABC,以边BC为直径的半圆与边AB,AC分别交于点D,点E,过点D作DF⊥AC,垂足为点F.
(1)判断DF与⊙O的位置关系,并证明你的结论;
(2)过点F作FH⊥BC,垂足为点H.若等边△ABC的边长为4,求FH的长.
(结果保留根号)
(1)DF与⊙O相切.
证明:连接OD,
∵△ABC是等边三角形,DF⊥AC,
∴∠ADF=30°.
∵OB=OD,∠DBO=60°,
∴∠BDO=60°.(3分)
∴∠ODF=180°-∠BDO-∠ADF=90°.
∴DF是⊙O的切线.(5分)

(2)∵△BOD、△ABC是等边三角形,
∴∠BDO=∠A=60°,
∴ODAC,
∵O是BC的中点,
∴OD是△ABC的中位线,
∴AD=BD=2,
又∵∠ADF=90°-60°=30°,
∴AF=1.
∴FC=AC-AF=3.(7分)
∵FH⊥BC,
∴∠FHC=90°.
在Rt△FHC中,sin∠FCH=
FH
FC

∴FH=FC•sin60°=
3
3
2

即FH的长为
3
3
2
.(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E.
(1)求证:PB为⊙O的切线;
(2)若tan∠ABE=
1
2
,求sin∠E.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,D是半径为R的⊙O上一点,过点D作⊙O的切线交直径AB的延长线于点C,下列四个条件:①AD=CD;②∠A=30°;③∠ADC=120°;④DC=
3
R.其中,使得BC=R的有(  )
A.①②B.①③④C.②③④D.①②③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,P是⊙O外一点,PA、PB切⊙O于点A、B,点C在优弧AB上,若么P=68°,则∠ACB等于(  )
A.22°B.34°C.56°D.68°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,O是已知线段AB上一点,以OB为半径的⊙O交线段AB于点C,以线段AO为直径的半圆交⊙O于点D,过点B作AB的垂线与AD的延长线交于点E;
(1)求证:AE切⊙O于点D;
(2)若AC=2,且AC、AD的长是关于x的方程x2-kx+4
5
=0
的两根,求线段EB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

以三角形的一边为直径的圆恰好与另一边相切,则此三角形是(  )
A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA、PB是⊙O的两条切线,切点A、B.如果∠APO=25°,则∠AOB等于(  )
A.140°B.130°C.120°D.110°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在坐标平面内,半径为R的⊙O与x轴交于点D(1,0)、E(5,0),与y轴的正半轴相切于点B.点A、B关于x轴对称,点P(a,0)在x的正半轴上运动,作直线AP,作EH⊥AP于H.
(1)求圆心C的坐标及半径R的值;
(2)△POA和△PHE随点P的运动而变化,若它们全等,求a的值;若给定a=6,试判定直线AP与⊙C的位置关系(要求说明理由).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切,切点为D.如果∠A=35°,那么∠C等于(  )
A.20°B.30°C.35°D.55°

查看答案和解析>>

同步练习册答案