科目:初中数学 来源: 题型:
如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N,
(1)∠MPN=
(2)求证:PM+PN=3a
(2)如图2,点O是AD的中点,连接OM、ON。求证:OM=ON
(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,点P是ABCD边上一动点.沿A- D- C-B的路径移动,设P点经过的路径长为x,△BAP的面积是Y, 则下列能大致反映,y与x的函数关系的图象是
查看答案和解析>>
科目:初中数学 来源: 题型:
如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥。如图是一个四棱柱和一个六棱锥,它们各有12条棱,下列棱柱中和九棱锥的棱数相等的是
A. 五棱柱 B. 六棱柱 C. 七棱柱 D. 八棱柱
查看答案和解析>>
科目:初中数学 来源: 题型:
木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:
方案一:直接锯一个半径最大的圆;
方案二:圆心O1,O2分别在CD,AB上,半径分别是O1C,O2A,锯两个外切的半圆拼成一个圆;
方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;
方案四:锯一块小矩形BCEF拼接到矩形AEFD下面,并利用拼成的木板锯一个尽可能大的圆。
(1)写出方案一中的圆的半径;
(2)通过计算说明方案二和方案三中,哪个圆的半径较大?
(3)在方案四中,设CE=(),圆的半径为,
①求关于的函数解析式;
②当取何值时圆的半径最大?最大半径是多少?并说明四种方案中,哪一个圆形桌面的半径最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB,⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线相较于另一点F,且EG:EF=。当边AD或BC所在的直线与⊙O相切时,AB的长是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com