精英家教网 > 初中数学 > 题目详情
如图,经过点A(-1,0)的一次函数y=ax+b(a≠0)与反比例函数y=
k
x
(k≠0)的图象相交于P和Q两点,过点P作PB⊥x轴于点B.已知tan∠PAB=
3
2
,点B的坐标为(2,0).
(1)求反比例函数和一次函数的解析式;
(2)求△PQB面积.
分析:(1)利用tan∠PAB=
3
2
,以及点B坐标为(2,0),点A(-1,0),即可得出AB的长,进而得出P点坐标,分别代入函数解析式求出即可;
(2)利用两函数解析式得出交点坐标,即可得出对应线段之间的关系,即可得出△PQB的面积.
解答:解:(1)∵BO=2,AO=1,
∴AB=3,
∵tan∠PAB=
PB
AB
=
3
2

∴PB=
9
2

∴P点坐标为:(2,
9
2
),
把P(2,
9
2
),代入反比例函数解析式y=
k
x
,得k=9,
∴反比例函数解析式为y=
9
x

把点A(-1,0),P(2,
9
2
),代入y=ax+b得:
a-b=0
2a+b=
9
2

解得:
a=
3
2
b=
3
2

故一次函数解析式为y=
3
2
x+
3
2


(2)过点Q作QM⊥y轴于点M,
y=
3
2
x+
3
2
y=
9
x

解得:
x=2
y=
9
2
x=-3
y=-3

∴Q点坐标为:(-3,-3),
设直线与x轴交点为C,易知C(-
3
2
,0),
∴S△PQB=
1
2
•PB•QM
=
1
2
×
9
2
×3
=
27
4
点评:此题主要考查了待定系数法求一次函数与反比例函数解析式,根据图形得出三角形底与高的长度是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、按要求画图:
(1)如图,要从小河引水到村庄A,请设计并作出一条最佳路线;

(2)如图,经过点D作DE⊥AB于E,作DF∥CB交AB于点F.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南通)如图,经过点A(0,-4)的抛物线y=
1
2
x2+bx+c与x轴相交于B(-2,0),C两点,O为坐标原点.
(1)求抛物线的解析式;
(2)将抛物线y=
1
2
x2+bx+c向上平移
7
2
个单位长度,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;
(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•辽阳)如图,⊙O经过点B、D、E,BD是⊙O的直径,∠C=90°,BE平分∠ABC.
(1)试说明直线AC是⊙O的切线;
(2)当AE=4,AD=2时,求⊙O的半径及BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通)如图,经过点B(-2,0)的直线y=kx+b与直线y=4x+2相交于点A(-1,-2),则不等式4x+2<kx+b<0的解集为
-2<x<-1
-2<x<-1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北碚区模拟)如图,经过点A(-2,0)的一次函数y=ax+b(a≠0)与反比例函数y=
k
x
(k≠0)的图象相交于P、Q两点,过点P作PB⊥x轴于点B.已知tan∠PAB=
3
2
,点B的坐标为(4,0).
(1)求反比例函数和一次函数的解析式;
(2)设一次函数与y轴相交于点C,求四边形OBPC的面积.

查看答案和解析>>

同步练习册答案