精英家教网 > 初中数学 > 题目详情

【题目】如图,点DABC的边AC上,要判定ADBABC相似,需添加一个条件,则以下所添加的条件不正确的是(  )

A.ABD=∠CB.ADB=∠ABCC.D.

【答案】D

【解析】

由∠A是公共角,利用有两角对应相等的三角形相似,即可得AB正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.

∵∠A是公共角,

∴当∠ABD=∠C或∠ADB=∠ABC时,ADB∽△ABC(有两角对应相等的三角形相似);

AB正确;

时,ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);

C正确;

时,∠A不是夹角,故不能判定ADBABC相似,

D错误.

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程ym)与各自离开出发的时间xmin)之间的函数图象如图所示:

1)求两人相遇时小明离家的距离;

2)求小丽离距离图书馆500m时所用的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点MBA的延长线上,MD切⊙O于点D,过点BBNMD于点C,连接AD并延长,交BN于点N

1)求证:AB=BN

2)若MD=4,CD=2.4,求

3)若AM=2CN=1.2,求⊙O的半径长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中,OA1B1是边长为2的等边三角形,作B2A2B1OA1B1关于点B1成中心对称,再作B2A3B3B2A2B1关于点B2成中心对称,如此作下去,则B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与坐标轴交于A(﹣40)、B20)、C04),连接BCAC

1)求抛物线的解析式;

2)若点E是抛物线在第二象限上的一点,过点EDEAC于点D,求DE的最大值.

3)若点E是抛物线上第二象限上的一动点,过点EDEAC于点D,连接CE,若△CDE与△COB相似,直接写出点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学兴趣小组的同学们,想利用自己所学的数学知识测量学校旗杆的高度:下午活动时间,兴趣小组的同学们来到操场,发现旗杆的影子有一部分落在了墙上(如图所示).同学们按照以下步骤进行测量:测得小明的身高1.65米,此时其影长为2.5米;在同一时刻测量旗杆影子落在地面上的影长BC9米,留在墙上的影高CD2米,请你帮助兴趣小组的同学们计算旗杆的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司在甲乙两地同时销售某种品牌的汽车,已知在甲地的总销售利润y(单位:万元)与销售量x(单位:辆)之间满足y=﹣x2+10x,在乙地每销售一辆汽车可获得2万元的销售利润,若该公司在甲乙两地共销售30辆该品牌的汽车,甲乙两地总的销售利润为W万元,其中在甲地销售x辆.

1)求Wx的函数关系式;

2)甲乙两地各销售多少辆车时W最大?W的最大值是多少?

3)为了开拓甲地市场,公司规定甲地平均每辆汽车的销售利润不高于2万元,那么公司销售这30辆汽车可获得的最大销售利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PAPB为圆O的切线,切点分别为ABPOAB于点CPO的延长线交圆O于点D,下列结论不一定成立的是( )

A. PAPBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EABCD的边CD的中点,延长AEBC的延长线于点F.

(1)求证:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的长.

查看答案和解析>>

同步练习册答案