精英家教网 > 初中数学 > 题目详情
草莓是对蔷薇科草莓属植物的通称,属多年生草本植物,草莓的外观呈心形,鲜美红嫩,果肉多汁,含有特殊的浓郁水果芳香,草莓营养价值高,含丰富维生素C,有帮助消化的功效,与此同时,草莓还可以巩固齿龈,清新口气,润泽喉部.我市某草莓种植基地去年第x个月种植草莓的亩数y(亩),与x(1≤x≤12,且x为整数)之间的函数关系如表:
月份x123456789101112
13种植某数y6810121416161616161616
每亩收益z(元)与月份x(月)(1≤x≤12,且x为整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数,反比例函数或二次函数的有关知识,直接写出y与x之间的函数关系式,根据如图所示的变化趋势,直接写出z与x之间满足的函数关系式;
(2)该草莓种植基地在去年哪个月的总收益最大,求出这个最大收益;
(3)今年1月份,该草莓种植基地加大规模,种植草莓比去年12月份多4亩,每亩收益比去年12月份多a%,今年2月份,该草莓种植基地继续加大规模,种植草莓比今年1月份多2a%,每亩收益比今年1月份多6元,若今年2月份该草莓种植基地总收益为672元,请你参考以下数据,通过计算估算出a的整数值.(参考数据:
63
=7.94,
65
=8.06,
66
=8.12)
(1)当1≤x≤6,y=2x+4,
当6≤x≤12,y=16;
当1≤x≤6,z=-
9
2
x+
75
2

当6≤x≤12,z=
9
4
x-3;

(2)设每月的总收益为W元,
当1≤x≤6时,
W=(2x+4)(-
9
2
x+
75
2
)=-9(x-
19
6
2+
961
4

即当3月份时收益最大,这个最大收益是240元;
当6≤x≤12时,
W=16×(
9
4
x-3)=36x-48,
当x=12时,y取得最大值为384;
即当12月份时收益最大,这个最大收益是384元;
综上所知12月份时收益最大,这个最大收益是384元;

(3)1月份的每亩收益:z=(
9
4
×12-3)(1+a%)=24+0.24a,亩数y=16+4=20,
(24+6+0.24a)×20×(1+2a%)=672,
化简得a2+175a-750=0,
解得a=
-175±
33625
2

a1≈4,a2≈-179(不合题意,舍去),
答:a的整数值约为4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=4x2-7x+4与直线y=x+b相交于A、B两点.
(1)求b的取值范围;
(2)当AB=2时,求b的值;
(3)设坐标原点为O,在(2)的条件下,求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

两个数相差左,设其中较大的一个数为x,那么它们的积y是如何随x的变化而变化的?你能分别用函数表达式、表格和图象表示这种变化吗?
(1)用函数表达式表示:y=______;
(左)用表格表示:
x
y
(3)用图象表示.
(4)根据以上三种表示方式回答下列问题:
①自变量x的取值范围是什么?
②图象的对称轴和顶点坐标分别是什么?
③如何描述y随x的变化而变化的情况?
④你是分别通过哪种表示方式回答上面三个问题的?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一座抛物线型拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m.
(1)在如图所示的平面直角坐标系中,求出抛物线解析式;
(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m.求水面在正常水位基础上涨多少m时,就会影响过往船只?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB.
(1)求证:mn=-6;
(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:3?若存在,求出直线l对应的函数关系式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,抛物线y=
2
m
x2-2x
与x轴负半轴交于点A,顶点为B,且对称轴与x轴交于点C.
(1)求点B的坐标(用含m的代数式表示);
(2)D为BO中点,直线AD交y轴于E,若点E的坐标为(0,2),求抛物线的解析式;
(3)在(2)的条件下,点M在直线BO上,且使得△AMC的周长最小,P在抛物线上,Q在直线BC上,若以A、M、P、Q为顶点的四边形是平行四边形,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线经过一直线y=3x-3与x轴、y轴的交点,并经过(2,5)点.
求:(1)抛物线的解析式;
(2)抛物线的顶点坐标及对称轴;
(3)当自变量x在什么范围内变化时,函数y随x的增大而增大?
(4)在坐标系内画出抛物线的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AB=2AD,线段EF=10.在EF上取一点M,分别以EM、MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN矩形ABCD.令MN=x,当x为何值时,矩形EMNH的面积S有最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,∠B=90°,AB=4,BC=8,E是AC边上一点,ED⊥AB于点D,EF⊥BC于F,设AD为x,四边形EFBD的面积为y.
(1)写出y与x的函数关系式,并求出自变量x的取值范围;
(2)求E点在AC边上的什么位置时,四边形EFBD的面积最大,最大面积是多少?

查看答案和解析>>

同步练习册答案