【题目】如图,在△ABC中,AB=AC=4,AF⊥BC于点F,BH⊥AC于点H.交AF于点G,点D在直线AF上运动,BD=DE,∠BDE=135°,∠ABH=45°,当AE取最小值时,BE的长为_____.
【答案】2.
【解析】
如图,连接CG,CE.证明△DBG∽△EBC,推出∠BGD=∠BCE=112.5°,推出∠ACE=45°,推出点E的运动轨迹是直线EC,推出当AE⊥EC时,AE的值最小,再利用勾股定理求出BE即可.
如图,连接CG,CE.
∵BH⊥AC,
∴∠BHA=90°,
∵∠ABH=45°,
∴∠BAC=45°,
∵AB=AC,AF⊥BC,
∴∠BAF=∠CAF=22.5°,BF=CF,
∴GB=GC,
∴∠BGF=∠CGF=67.5°,
∴∠GBF=∠GCF=22.5°,
∵DB=DE,∠BDE=135°,
∴∠DBE=∠DEB=22.5°,
∴∠DBE=∠GBC=∠DEB=∠GCF,
∴△DBE∽△GBC,
∴=,
∴=,
∵∠DBG=∠EBC,
∴△DBG∽△EBC,
∴∠BGD=∠BCE=112.5°,
∵∠ACB=67.5°,
∴∠ACE=45°,
∴点E的运动轨迹是直线EC,
∴当AE⊥EC时,AE的值最小,最小值=AC=2,
此时∠BAE=90°,BE===2,
故答案为2.
科目:初中数学 来源: 题型:
【题目】已知等腰△ABC的顶角∠A=36°(如图).
(1)请用尺规作图法作底角∠ABC的平分线BD,交AC于点D(保留作图痕迹,不要求写作法);
(2)证明:△ABC∽△BDC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,
(1)求经过A、B、C三点的抛物线的解析式;
(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数(其中)的图像与轴交于、两点,与轴交于点.
(1)点的坐标为 , ;
(2)若为的外心,且与的面积之比为,求的值;
(3)在(2)的条件下,试探究抛物线上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一条东西走向的公路MN的同侧有A,B两个村庄,村庄B位于村庄A的北偏东60°的方向上(∠QAB=60°),公路旁的货站P位于村庄A的北偏东15°的方向上,已知PA平分∠BPN,AP=2km,求村庄A,B之间的距离.(计算结果精确到0.01km,参考数据:≈1.414,≈1.732,≈2.449)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD是正方形,PA是过正方形顶点A的直线,作DE⊥PA于E,将射线DE绕点D逆时针旋转45°与直线PA交于点F.
(1)如图1,当∠PAD=45°时,点F恰好与点A重合,则的值为 ;
(2)如图2,若45°<∠PAD<90°,连接BF、BD,试求的值,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的顶点,分别在,轴的负半轴上,,在反比例函数()的图象上,与轴交于点,且,若的面积是3,则的值是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】疫情无情人有情,爱心捐款传真情,新型冠状病毒感染的肺炎疫情期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:
金额/元 | 5 | 10 | 20 | 50 | 100 |
人数 | 6 | 17 | 14 | 8 | 5 |
则他们捐款金额的众数和中位数分别是( )
A.100,10B.10,20C.17,10D.17,20
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com