精英家教网 > 初中数学 > 题目详情

如图,在菱形ABCD中,点E、F分别为边AD、CD上的动点(都与菱形的顶点不重合),连接EF、BE、BF.
(1)若∠A=60°,且AE+CF=AB,判断△BEF的形状,并说明理由;
(2)在(1)的条件下,设菱形的边长为a,求△BEF面积的最小值.

解:(1)答:△BEF的形状为等边三角形.
证明:如图,
在菱形ABCD中,∠A=60°,
∴AB∥DC,AB=BC=CD=DA.
∴∠ADC=120°.
∴∠1=∠2=60°.
∴∠ABD=∠1=∠A=60°.
∴AB=BD,∠A=∠2.
∵AE+CF=AB,DF+CF=CD,
∴AE=DF.
∴△ABE≌△DBF.
∴BE=BF,∠3=∠4.
又∵∠3+∠5=60°,
∴∠4+∠5=60°.
∴△BEF为等边三角形.

(2)如图:
当BE⊥AD时,BE最小,此时,S△BEF最小.
设此时EF与BD交于点M,
∴∠ABE=∠DBE=30°.
∵∠BEM=60°,
∴∠BME=90°.
在Rt△ABE中,AB=a,


在Rt△BEM中,∠BEM=60°,


分析:(1)通过证明BE=BF,∠EBF的度数,可判断△BEF是等边三角形.
(2)当BE⊥AD时,BE最小,此时,S△BEF最小.求出此时的边EF长,及其对应高BM的长,按照三角形的面积公式即可求出.
点评:本题考查了菱形的性质,及全等三角形和等边三角形的判定和性质,难度不大,注意这些知识的综合应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为(  )
A、5B、10C、6D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为
1
1
时,四边形AMDN是矩形;
           ②当AM的值为
2
2
时,四边形AMDN是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=
35
,BE=4,则tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,AE⊥BC,垂足为F,EC=1,∠B=30°,求菱形ABCD的周长.

查看答案和解析>>

同步练习册答案