精英家教网 > 初中数学 > 题目详情
阅读:我们规定[p,q]为一次函数y=px+q的特征数.
(1)若特征数是[2,k-2]的一次函数为正比例函数,求k的值;
(2)设点A,B分别为抛物线y=(x+m)(x-2)与x轴、y轴的交点,其中m>0,且△OAB的面积为4,O为坐标原点,求图象过A、B两点的一次函数的特征数.
(3)设点P(m1,n1),Q(m2,n2)是抛物线y=(x+m)(x-2)上两个不同的点,且关于此抛物线的对称轴对称,请直接写出m1+m2的值.
分析:(1)根据材料的相关知识,先表示出特征数所表示的一次函数解析式,由于该函数是正比例函数,那么常数项为0,可据此求出k的值;
(2)根据抛物线的解析式可得出A、B的坐标(需注意A点的坐标有两种情况),根据△OAB的面积即可求出m的值,进而可确定A点的坐标,由待定系数法即可求出直线AB的解析式,根据阅读材料的相关知识即可求得图象过A、B的一次函数的特征数;
(3)在(2)中已求得m=2,那么抛物线的对称轴为y轴,若P、Q关于y轴对称,那么P、Q的横坐标互为相反数,由此可得m1+m2=0.
解答:解:(1)∵特征数为[2,k-2]的一次函数为y=2x+k-2,
∴k-2=0,
∴k=2;(2分)
(2)∵抛物线与x轴的交点为A1(-m,0),A2(2,0),
∴与y轴的交点为B(0,-2m);
若S△OBA1=4,则
1
2
×m×2m=4,
∴m1=2,m2=-2(舍);
若S△OBA2=4,则
1
2
×2×2m=4,
∴m=2;
综上,m=2;
∴抛物线为y=(x+2)(x-2),它与x轴的交点为(-2,0),(2,0),与y轴的交点为(0,-4),
∴所求一次函数为y=-2x-4或y=2x-4,
∴特征数为[-2,-4]或[2,-4].(6分)
(3)m1+m2=0.(8分)
点评:此题是二次函数的综合类试题,涉及到一次函数解析式的确定、图形面积的求法、二次函数解析式的确定等知识,读懂材料的含义是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•张家界)阅读材料:对于任何实数,我们规定符号
.
ab
cd
.
的意义是
.
ab
cd
.
=ad-bc.例如:
.
1
3
2
4
.
=1×4-2×3=-2,
.
-2
3
4
5
.
=(-2)×5-4×3=-22.
(1)按照这个规定,请你计算
.
56
78
.
的值;
(2)按照这个规定,请你计算:当x2-4x+4=0时,
.
x+1
x-1
2x
2x-3
.
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读:我们规定[p,q]为一次函数y=px+q的特征数.
(1)若特征数是[2,k-2]的一次函数为正比例函数,求k的值;
(2)设点A,B分别为抛物线y=(x+m)(x-2)与x轴、y轴的交点,其中m>0,且△OAB的面积为4,O为坐标原点,求图象过A、B两点的一次函数的特征数.
(3)设点P(m1,n1),Q(m2,n2)是抛物线y=(x+m)(x-2)上两个不同的点,且关于此抛物线的对称轴对称,请直接写出m1+m2的值.

查看答案和解析>>

科目:初中数学 来源:2011年3月九年级质量评估数学试卷(解析版) 题型:解答题

阅读:我们规定[p,q]为一次函数y=px+q的特征数.
(1)若特征数是[2,k-2]的一次函数为正比例函数,求k的值;
(2)设点A,B分别为抛物线y=(x+m)(x-2)与x轴、y轴的交点,其中m>0,且△OAB的面积为4,O为坐标原点,求图象过A、B两点的一次函数的特征数.
(3)设点P(m1,n1),Q(m2,n2)是抛物线y=(x+m)(x-2)上两个不同的点,且关于此抛物线的对称轴对称,请直接写出m1+m2的值.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省宁波市初中学业考试数学模拟试卷(解析版) 题型:解答题

阅读:我们规定[p,q]为一次函数y=px+q的特征数.
(1)若特征数是[2,k-2]的一次函数为正比例函数,求k的值;
(2)设点A,B分别为抛物线y=(x+m)(x-2)与x轴、y轴的交点,其中m>0,且△OAB的面积为4,O为坐标原点,求图象过A、B两点的一次函数的特征数.
(3)设点P(m1,n1),Q(m2,n2)是抛物线y=(x+m)(x-2)上两个不同的点,且关于此抛物线的对称轴对称,请直接写出m1+m2的值.

查看答案和解析>>

同步练习册答案