精英家教网 > 初中数学 > 题目详情
(2013•山西模拟)操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
猜想与发现:
(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.
结论1:DM、MN的数量关系是
相等
相等

结论2:DM、MN的位置关系是
垂直
垂直

拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,证明出△AEF是等腰三角形;
(2)DM、MN的数量关系是相等,位置关系式垂直;
(3)连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=
1
2
AE,再有(1)的结论以及角角之间的数量关系得到∠DMN=∠DGE=90°.
解答:(1)证明:∵四边形ABCD是正方形,
∴AB=AD=BC=CD,∠B=∠ADF=90°,
∵△CEF是等腰直角三角形,∠C=90°,
∴CE=CF,
∴BC-CE=CD-CF,
即BE=DF,
∴△ABE≌△ADF,
∴AE=AF,
∴△AEF是等腰三角形;
(2)解:相等,垂直;
证明:∵在Rt△ADF中DM是斜边AF的中线,
∴AF=2DM,
∵MN是△AEF的中位线,
∴AE=2MN,
∵AE=AF,
∴DM=MN;
∵∠DMF=∠DAF+∠ADM,
∵∠FMN=∠FAE,∠DAF=∠BAE,
∴∠DMN=∠BAD=90°,
∴DM⊥MN;

(3)(2)中的两个结论还成立,
证明:连接AE,交MD于点G,
∵点M为AF的中点,点N为EF的中点,
∴MN∥AE,MN=
1
2
AE,
由(1)同理可证,
AB=AD=BC=CD,∠B=∠ADF,CE=CF,
又∵BC+CE=CD+CF,即BE=DF,
∴△ABE≌△ADF,
∴AE=AF,
在Rt△ADF中,
∵点M为AF的中点,
∴DM=
1
2
AF,
∴DM=MN,
∵△ABE≌△ADF,
∴∠1=∠2,
∵AB∥DF,
∴∠1=∠3,
同理可证:∠2=∠4,
∴∠3=∠4,
∵DM=AM,
∴∠MAD=∠5,
∴∠DGE=∠5+∠4=∠MAD+∠3=90°,
∵MN∥AE,
∴∠DMN=∠DGE=90°,
∴DM⊥MN.
点评:本题主要考查正方形的性质以及全等三角形的判定与性质等知识点,解答本题的关键是利用好各小题之间的联系,此题难度不大,但是角角之间的数量关系有点复杂,请同学们解答的时候注意.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•山西模拟)函数y=ax+b与y=ax2+b在同一坐标系中的大致图象是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•山西模拟)函数y=
x+1
x-1
中,自变量x的取值范围是
x≥-1且x≠1
x≥-1且x≠1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•山西模拟)元旦联欢会上,小明、小华、小聪各准备了一个节目,若他们出场先后的机会是均等的,则按“小明-小华-小聪”顺序演出的概率是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•山西模拟)在直角坐标系中,以原点为圆心,4为半径作圆,该圆上到直线y=-x+
2
的距离等于2的点共有(  )

查看答案和解析>>

同步练习册答案