【题目】西安市某中学数学兴趣小组在开展“保护环境,爱护树木”的活动中,利用课外时间测量一棵古树的高,由于树的周围有水池,同学们在低于树基3.3米的一平坝内(如图).测得树顶A的仰角∠ACB=60°,沿直线BC后退6米到点D,又测得树顶A的仰角∠ADB=45°.若测角仪DE高1.3米,求这棵树的高AM.(结果保留两位小数,≈1.732)
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.
(1)求证:△ABC∽△FCD;
(2)过点A作AM⊥BC于点M,求DE:AM的值;
(3)若S△FCD=5,BC=10,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若∠C=60°,AC=12,求的长.
(3)若tanC=2,AE=8,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践:
阅读理解:数学兴趣小组在探究如何求的值,经过思考、讨论、交流,得到以下思路:
如图1,作,使
,
,延长
至点
,使
,连接
.
设,则
,
.
.
请解决下列问题:
(1)类比求解:求出的值;
(2)问题解决:如图2,某住宅楼的后面有一建筑物
,当光线与地面的夹角是
时,住宅在建筑物的墙上留下高
的影子
;而当光线与地面的夹角是
时,住宅楼顶
在地面上的影子
与墙角
有
的距离(
,
,
在一条直线上).求住宅楼
的高度(结果保留根号);
(3)探究发现:如图3,小明用硬纸片做了两个直角三角形,在中,
,
,
;在
中,
,
,
.他将
的斜边
与
的斜边
重合在一起,并将
沿
方向移动.在移动过程中,
,
两点始终在
边上(移动开始时点
与点
重合).探究在
移动过程中,是否存在某个位置,使得
?如果存在,直接写出
的长度;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点在
轴正半轴上,
,点
为
中点,点
在射线
上,把线段
绕点
顺时针旋转
得到线段
,设点
的横坐标为
.请根据题意画出图形并完成下列问题:
(1)求的长;
(2)设点的横坐标为
,求
与
的关系式;
(3)在(2)的条件下,作点关于直线
的对称点
,连接
,当
为等腰三角形时,求点
的横坐标
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D、E在BC边上,点F在AC边上,将△ABD沿着AD翻折,使点B和点E重合,将△CEF沿着EF翻折,点C恰与点A重合.结论:①∠BAC=90°,②DE=EF,③∠B=2∠C,④AB=EC,正确的有( )
A.①②③④B.③④C.①②④D.①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,一次函数y=2x+b的图象与x轴的交点为A(2,0),与y轴的交点为B,直线AB与反比例函数y=的图象交于点C(﹣1,m).
(1)求一次函数和反比例函数的表达式;
(2)直接写出关于x的不等式2x+b>的解集;
(3)点P是这个反比例函数图象上的点,过点P作PM⊥x轴,垂足为点M,连接OP,BM,当S△ABM=2S△OMP时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第
个等边三角形的边长等于__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com