精英家教网 > 初中数学 > 题目详情
9.如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为15.3米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)

分析 在Rt△ACD中,求出AD,再利用矩形的性质得到BD=CE=1.5,由此即可解决问题.

解答 解:如图,过点C作CD⊥AB,垂足为D.则四边形CEBD是矩形,BD=CE=1.5m,
在Rt△ACD中,CD=EB=10m,∠ACD=54°,
∵tan∠ACE=$\frac{AD}{CD}$,
∴AD=CD•tan∠ACD≈10×1.38=13.8m.       
∴AB=AD+BD=13.8+1.5=15.3m.
答:树的高度AB约为15.3m.            
故答案为15.3

点评 本题考查解直角三角形的应用-仰角俯角问题、锐角三角函数等知识,解题的关键是通过添加辅助线,构造直角三角形解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.先化简,再求值:(1+$\frac{1}{x-2}$)÷$\frac{x-1}{{x}^{2}-4x+4}$,其中x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系中,抛物线y=-x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.
(1)求抛物线y=-x2+ax+b的解析式;
(2)当点P是线段BC的中点时,求点P的坐标;
(3)在(2)的条件下,求sin∠OCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=$\frac{k}{x}$的图象于点B,AB=$\frac{3}{2}$.
(1)求反比例函数的解析式;
(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.
(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?
(2)若原点O在图中数轴上点C的右边,且CO=28,求p.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:

根据以上信息解答下列问题:
(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为144°;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有1人,补全条形统计图.
(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?
(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.
(1)由AB,BD,$\widehat{AD}$围成的曲边三角形的面积是$\frac{25}{2}$+$\frac{25π}{4}$;
(2)求证:DE是⊙O的切线;
(3)求线段DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知抛物线y=ax2+bx+c的顶点坐标为E(1,4),与x轴交于点A、B(3,0),与y轴交于点C.
(1)求该抛物线所对应的函数关系式,并直接写出点C的坐标;
(2)如图1,点P是第一象限内抛物线上一动点,连结PC、PB、BC,设点P的横坐标为t.
①当t为何值时,△PBC的面积最大?并求出最大面积;
②当t为何值时,△PBC是直角三角形?
(3)如图2,过E作EF⊥x轴于F,若M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请直接写出实数m的取值范围.

查看答案和解析>>

同步练习册答案