精英家教网 > 初中数学 > 题目详情
如图:有一轴截面为正三角形的圆锥形容器,内部盛水高度为10cm,放入一个球后,水面恰好与球相切,求球的半径.(圆锥的体积公式V=
1
3
πR2h,其中R为底面半径,h为高线;球的体积公式V=
4
3
πR3,其中R为球的半径)
分析:根据水的高度以及圆锥形容器的轴截面为等边三角形得到水的体积,设出球的半径表示出球的体积,则根据放球后总体积V′=V+V,得到关于铁球R的方程,解方程即可.
解答:解:如图所示,则△ABS为等边三角形,
∵SG=h=10,DG=
3
3
×10=
10
3
3

∴V=
π
3
•DG2•SG=
π
9
h3
设铁球的半径为R,
则SO=2R,SG=3R,
在Rt△FSB中,DG=SGtan∠FSB=
3
R,
设放入球之后,球与水共占体积为V′,
则V′=
π
3
•(DG)2•SG=
π
3
3
R)2•3R=3πR3,V=
3
R3
依题意,有V′=V+V
即3πR3=
4
3
πR3+
π
9
h3
∴R=
3225
15
×10=
2
3225
3

答:铁球的半径为
2
3225
3
点评:本题考查了切线的性质、等边三角形的性质、圆锥的体积公式、球的体积的求法,属于中档题目,也重点考查学生的计算能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求:
(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围.
(2)有一辆宽2米,高2.5米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.2m宽的隔离带,则该农用货车还能通过隧道吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求:
(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围.
(2)有一辆宽2米,高2.5米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.2m宽的隔离带,则该农用货车还能通过隧道吗?

查看答案和解析>>

科目:初中数学 来源:2012届九年级第二学期第一阶段考试数学卷(解析版) 题型:解答题

如图,隧道的截面由抛物线和矩形构成,矩形的长,宽,以所在的直线为轴,线段的中垂线为轴,建立平面直角坐标系,轴是抛物线的对称轴,顶点到坐标原点的距离为

(1)求抛物线的解析式;

(2)一辆货运卡车高,宽2.4m,它能通过该隧道吗?

(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设

有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?

 

 

查看答案和解析>>

科目:初中数学 来源:2012届九年级第二学期第一阶段考试数学卷(解析版) 题型:解答题

如图,隧道的截面由抛物线和矩形构成,矩形的长,宽,以所在的直线为轴,线段的中垂线为轴,建立平面直角坐标系,轴是抛物线的对称轴,顶点到坐标原点的距离为

(1)求抛物线的解析式;

(2)一辆货运卡车高,宽2.4m,它能通过该隧道吗?

(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设

有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?

 

 

查看答案和解析>>

同步练习册答案