精英家教网 > 初中数学 > 题目详情

【题目】如图,已知直线y=﹣x+4与两坐标轴分别相交于点A,B两点,点C是线段AB上任意一点,过C分别作CD⊥x轴于点D,CE⊥y轴于点E.双曲线 与CD,CE分别交于点P,Q两点,若四边形ODCE为正方形,且 ,则k的值是( )

A.4
B.2
C.
D.

【答案】B
【解析】解:四边形ODCE为正方形,则OC是第一象限的角平分线,则解析式是y=x,
根据题意得:
解得:
则C的坐标是(2,2),
设Q的坐标是(2,a),
则DQ=EP=a,PC=CQ=2﹣a,
正方形ODCE的面积是:4,
SODQ= ×2a=a,同理SOPE=a,SCPQ= (2﹣a)2
则4﹣a﹣a﹣ (2﹣a)2=
解得:a=1或﹣1(舍去),
则Q的坐标是(2,1),
把(2,1)代入 得:k=2.
故选B.

【考点精析】关于本题考查的反比例函数的概念和反比例函数的图象,需要了解形如y=k/x(k为常数,k≠0)的函数称为反比例函数.自变量x的取值范围是x不等于0的一切实数,函数的取值范围也是一切非零实数;反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察下列等式:
第1个等式: a1==×(1) ;
第2个等式: a2==×() ;
第3个等式: a3==×() ;
第4个等式: a4==×() ;

请解答下列问题:
(1)按以上规律列出第6个等式: a6==.
(2)用含有 n 的代数式表示第 n 个等式: an==.( 为正整数);
(3)求 a1+a2+a3+...+a100 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,菱形ABCD中,对角线ACBD相交于点O,且AC=12cmBD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/sEFBD,且与ADBDCD分别交于点EQF;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为ts)(0t8).设四边形APFE的面积为ycm2),则下列图象中,能表示yt的函数关系的图象大致是(

A. B C D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是( )

A.该村人均耕地面积随总人口的增多而增多
B.该村人均耕地面积y与总人口x成正比例
C.若该村人均耕地面积为2公顷,则总人口有100人
D.当该村总人口为50人时,人均耕地面积为1公顷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

(1)、求证:DEAG;

(2)、如图2,正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°α<360°),得到正方形OEFG

在旋转过程中,当OAG是直角时,求α的度数;

若正方形ABCD的边长为2,在旋转过程中,求AF长的最大值和此时α的度数,直接写出结果不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是_______,样本容量是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

上课时李老师提出这样一个问题:对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范围.

小捷的思路是:原不等式等价于x2﹣2x﹣1>a,设函数y1=x2﹣2x﹣1,y2=a,画出两个函数的图象的示意图,于是原问题转化为函数y1的图象在y2的图象上方时a的取值范围.

请结合小捷的思路回答:

对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,则a的取值范围是   

参考小捷思考问题的方法,解决问题:

关于x的方程x﹣4=在0<a<4范围内有两个解,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算a2a4的结果是(
A.a8
B.a6
C.2a6
D.2a8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABC=90°,以BC为直径作O,交AC于D.E为的中点,连接CE,BE,BE交AC于F.

(1)求证:AB=AF;

(2)若AB=3,BC=4,求CE的长.

查看答案和解析>>

同步练习册答案