分析 (1)由△CPM∽△DEP得$\frac{CP}{DE}$=$\frac{CM}{DP}$由此即可解决问题.
(2)y=-$\frac{1}{2}$x2+$\frac{1}{2}$mx,根据函数的最大值是4,列出不等式即可解决问题.
(3)存在,过P作PH垂直于AB,由对称的性质得到:PD′=PD=8-x,ED′=ED=y=-$\frac{1}{2}$x2+4x,EA=AD-ED=$\frac{1}{2}$x2-4x+4,∠PD′E=∠D=90°,在Rt△D′PH中,PH=4,D′P=DP=8-x,根据勾股定理表示出D′H,再由△ED′A∽△D′PH,由相似得比例,将各自表示出的式子代入,可列出关于x的方程,求出方程的解即可得到满足题意的x的值.
解答 解:(1):(1)∵PE⊥PM,∴∠EPM=90°,
∴∠DPE+∠CPM=90°,
又矩形ABCD,∴∠D=90°,
∴∠DPE+∠DEP=90°,
∴∠CPM=∠DEP,又∠C=∠D=90°,
∴△CPM∽△DEP,
∴$\frac{CP}{DE}$=$\frac{CM}{DP}$,
又CP=x,DE=y,AB=DC=m,∴DP=m-x,
又M为BC中点,BC=4,∴CM=2,
∴$\frac{x}{y}$=$\frac{2}{m-x}$,
∴y=-$\frac{1}{2}$x2+$\frac{1}{2}$mx.
(2)由题意:-$\frac{1}{2}$x2+$\frac{1}{2}$mx≤4,
∴$\frac{4×(-\frac{1}{2})×0-(\frac{1}{2}m)^{2}}{4×(-\frac{1}{2})}$≤4,
∴m2≤32,
∵m>0
∴0<m≤4$\sqrt{2}$.
(3)存在,过P作PH⊥AB于点H,
∵点D关于直线PE的对称点D′落在边AB上,
∴PD′=PD=8-x,ED′=ED=y=-$\frac{1}{2}$x2+4x,EA=AD-ED=$\frac{1}{2}$x2-4x+4,∠PD′E=∠D=90°,
在Rt△D′PH中,PH=4,D′P=DP=8-x,
根据勾股定理得:D′H=$\sqrt{{(8-x)^{2}-4}^{2}}$=$\sqrt{{x}^{2}-16x+48}$,
∵∠ED′A=180°-90°-∠PD′H=90°-∠PD′H=∠D′PH,∠PD′E=∠PHD′=90°,
∴△ED′A∽△D′PH,
∴$\frac{ED′}{D′P}$=$\frac{EA}{D′H}$,即,$\frac{-\frac{1}{2}{x}^{2}+4x}{8-x}$=$\frac{\frac{1}{2}{x}^{2}-4x+4}{\sqrt{{x}^{2}-16x+48}}$,
整理得:x2-4x+2=0,
解得:x=2$±\sqrt{2}$.
当x=2+$\sqrt{2}$时,y=5+2$\sqrt{2}$>4,
此时,点E在边DA的延长线上,D关于直线PE的对称点不可能落在边AB上,所以舍去.
当x=2-$\sqrt{2}$时,y=5-2$\sqrt{2}$<4,此时,点E在边AD上,符合题意.
所以当x=2-$\sqrt{2}$时,点D关于直线PE的对称点D′落在边AB上.
点评 此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,对称的性质,矩形的性质,以及一元二次方程的应用,利用了数形结合的数学思想,灵活运用相似三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:选择题
A. | 255分 | B. | 84.5分 | C. | 85.5分 | D. | 86.5分 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com