3£®ÒÑÖª£ºÅ×ÎïÏßC1£ºy=ax2¾­¹ýµã£¨2£¬$\frac{1}{2}$£©£¬Å×ÎïÏßC2£ºy=$\frac{1}{4}$x2£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©Èçͼ1£¬Ö±Ïßy=kx£¨k£¾0£©·Ö±ð½»µÚÒ»ÏóÏÞÄÚµÄÅ×ÎïÏßC2£¬C1ÓÚM£¬NÁ½µã£®ÇóÖ¤£ºMO=MN£»
£¨3£©Èçͼ2£¬½«Å×ÎïÏßC1ÏòÏÂƽÒƾ­¹ýµãA£¨8£¬0£©£¬½»yÖáÓÚµãC£¬µÃÅ×ÎïÏßC3£®µãPÊÇÅ×ÎïÏßC3ÉÏÔÚA£¬C¼äµÄÒ»¸ö¶¯µã£¨º¬¶Ëµã£©£¬D£¨0£¬-6£©£¬E£¨4£¬0£©£¬¼Ç¡÷PDEµÄÃæ»ýΪS£¬µãPµÄºá×ø±êΪx£®
 ¢ÙÇóS¹ØÓÚxµÄº¯Êý¹Øϵʽ£»
 ¢ÚÇóÂú×ãSΪÕûÊýµÄµãPµÄ¸öÊý£®

·ÖÎö £¨1£©½«µã£¨2£¬$\frac{1}{2}$£©´úÈëy=ax2¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©ÇóµÃM£¨4k£¬4k2£©£¬N£¨8k£¬8k2£©£¬¸ù¾ÝÁ½µã¼äµÄ¾àÀ빫ʽ¼´¿ÉµÃµ½½áÂÛ£»
£¨3£©¢ÙÒÀÌâÒâ¿ÉÇó³öÅ×ÎïÏßC3µÄ½âÎöʽΪy=$\frac{1}{8}$x2-8£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½µÃµ½ÇóµÃS=-$\frac{1}{4}$x2+3x+4 £¨0¡Üx¡Ü8 £©£¬
¢ÚÓÉÓÚS=-$\frac{1}{4}$x2+3x+4=-$\frac{1}{4}$£¨x-6£©2+13£¬ÓÚÊǵõ½ÔÚ0¡Üx¡Ü8 µÄÈ¡Öµ·¶Î§ÄÚ£¬SµÄȡֵΪ£º4¡ÜS¡Ü13£¬¼´S¿ÉÈ¡4ÖÁ13µÄ10¸öÕûÊý£¬µ±S=12ʱ£¬xÓÐÁ½¸öÖµÏà¶ÔÓ¦£¬¼´´æÔÚÁ½¸öµãPµÄλÖÃʹS=12£¬ÓÚÊǵõ½½áÂÛ£®

½â´ð ½â£º£¨1£©½«µã£¨2£¬$\frac{1}{2}$£©´úÈëy=ax2£¬½âµÃ£ºa=$\frac{1}{8}$£»

£¨2£©Ö±Ïßy=kx£¨k£¾0£©·Ö±ð½»µÚÒ»ÏóÏÞÄÚµÄÅ×ÎïÏßC2£¬C1ÓÚM£¬NÁ½µã£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{8}{x}^{2}}\\{y=kx}\end{array}\right.$µÃ£º$\left\{\begin{array}{l}{{x}_{1}=4k}\\{{y}_{1}=4{k}^{2}}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=0}\\{{y}_{2}=0}\end{array}\right.$£¬½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{4}{x}^{2}}\\{y=kx}\end{array}\right.$µÃ£¬$\left\{\begin{array}{l}{{x}_{3}=0}\\{{y}_{3}=0}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{4}=8k}\\{{y}_{4}=8{k}^{2}}\end{array}\right.$£¬
¡àM£¨4k£¬4k2£©£¬N£¨8k£¬8k2£©£¬
¡àOM=$\sqrt{£¨4k£©^{2}+£¨4{k}^{2}£©^{2}}$=4k$\sqrt{{k}^{2}+1}$£¬MN=$\sqrt{£¨4k-8k£©^{2}+£¨4{k}^{2}-8{k}^{2}£©^{2}}$=4k$\sqrt{{k}^{2}+1}$£¬
¡àOM=MN£»
£¨3£©¢ÙÒÀÌâÒâ¿ÉÇó³öÅ×ÎïÏßC3µÄ½âÎöʽΪy=$\frac{1}{8}$x2-8£¬
¡àS=S¡÷PDO+S¡÷POE-S¡÷ODE=3x+2¡Á£¨8-$\frac{1}{8}{x}^{2}$£©-12
=-$\frac{1}{4}$x2+3x+4 £¨0¡Üx¡Ü8 £©£¬
 ¢Ú¡ßS=-$\frac{1}{4}$x2+3x+4=-$\frac{1}{4}$£¨x-6£©2+13£¬
ÔÚ0¡Üx¡Ü8 µÄÈ¡Öµ·¶Î§ÄÚ£¬SµÄȡֵΪ£º4¡ÜS¡Ü13£¬
¼´S¿ÉÈ¡4ÖÁ13µÄ10¸öÕûÊý£¬
ÓÖµ±S=12ʱ£¬xÓÐÁ½¸öÖµÏà¶ÔÓ¦£¬¼´´æÔÚÁ½¸öµãPµÄλÖÃʹS=12£¬
ËùÒÔ¹²ÓÐ11¸öµãPʹSµÄֵΪÕûÊý£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬Á½µã¼äµÄ¾àÀ빫ʽ£¬Èý½ÇÐεÄÃæ»ýµÄ¼ÆË㣬¶þ´Îº¯ÊýµÄ×îÖµ£¬ÕýÈ·µÄÀí½âÌâÒâÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ä³Êдº¼¾·¿½»»áÆڼ䣬ij¹«Ë¾¶Ô²Î¼Ó±¾´Î·¿½»»áµÄÏû·ÑÕß½øÐÐÁËËæ»úµÄÎʾíµ÷²é£¬¹²·¢·Å1000·Ýµ÷²éÎÊ¾í£¬²¢È«²¿Êջأ¬¸ù¾Ýµ÷²éÎÊ¾í£¬½«Ïû·ÑÕßÄêÊÕÈëµÄÇé¿öÕûÀíºó£¬ÖƳɱí¸ñÈçÏ£¬½«Ïû·ÑÕß´òË㹺Âòס·¿Ãæ»ýµÄÇé¿öÕûÀíºó£¬×÷³ö²¿ÆµÊý·Ö²¼Ö±·½Í¼Èçͼ£º
ÄêÊÕÈ루ÍòÔª£©1.21.83.05.010.0
±»µ÷²éµÄÏû·ÑÕßÊý£¨ÈË£©2003004007030
ÇëÄã¸ù¾Ýͼ±íÐÅÏ¢£¬»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©¸ù¾Ý±í¸ñ¿ÉµÃ£¬±»µ÷²éµÄÏû·ÑÕßƽ¾ùÄêÊÕÈëΪ2.63ÍòÔª£»±»µ÷²éµÄÏû·ÑÕßÄêÊÕÈëµÄÖÐλÊýÊÇ2.4ÍòÔª£»ÖÚÊýÊÇ3.0ÍòÔª£®
£¨2£©²¹È«·Ö²¼Ö±·½Í¼£»
£¨3£©¸ù¾ÝƵÊý·Ö²¼Ö±·½Í¼£¬Çó´òË㹺Âò100-120ƽ·½Ã×ס·¿µÄÈËÊý¼°´òË㹺Âòס·¿Ãæ»ýСÓÚ100ƽ·½Ã×µÄÏû·ÑÕßÈËÊýÕ¼±»µ÷²éÏû·ÑÕßÈËÊýµÄ°Ù·ÖÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èçͼ£¬µãOÔÚÖ±ÏßABÉÏ£¬ODƽ·Ö¡ÏBOC£¬OEƽ·Ö¡ÏAOC£¬ÔòͼÖл¥²¹µÄ½ÇÓÐ5×飮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÒÑÖªÅ×ÎïÏß¾­¹ýA£¨1£¬0£©£¬C£¨0£¬4£©Á½µã£¬½»xÖáÓÚÁíÒ»µãB£¬Æä¶Ô³ÆÖáÊÇx=-1.5£®
£¨1£©ÇóÅ×ÎïÏ߶ÔÓ¦µÄº¯Êý¹Øϵʽ£»
£¨2£©µãDÔÚÅ×ÎïÏßÉÏ£¬Á¬½ÓBD½»yÖáÓÚµãE£¬Á¬½ÓAE£¬ÈôAE¡ÍBD£¬ÇóµãDµÄ×ø±ê£»
£¨3£©½«¡÷AOCÈÆ×ø±êƽÄÚÒ»µãQ£¨n£¬2£©Ðýת180¡ãºóµÃµ½¡÷A¡äO¡äE¡ä£¨µãA¡¢EµÄ¶ÔÓ¦µã·Ö±ðΪA¡ä¡¢E¡ä£©£¬µ±¡÷A¡äO¡äE¡äµÄÈýÌõ±ßÓëÅ×ÎïÏß¹²ÓÐÁ½¸ö¹«¹²µãʱ£¬ÇónµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®»¯¼ò£º|¦Ð-3.15|+¦Ð=3.15£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®µÈÑüÈý½ÇÐÎÒ»ÑüÉϵĸßÓëÁíÒ»ÑüµÄ¼Ð½ÇΪ52¡ã£¬Ôò¸ÃÈý½ÇÐεĵ׽ǵĶÈÊýΪ38¡ã»ò71¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÒÑÖªA£¨-1£¬0£©£¬B£¨1£¬1£©£¬°ÑÏ߶ÎABƽÒÆ£¬Ê¹µãBÂäÔÚµãD£¨3£¬4£©´¦£¬ÕâʱµãAÒƶ¯µ½µãC´¦£®
£¨1£©ÔÚͼÖн¨Á¢Ö±½Ç×ø±êϵ£¬»­³öƽÒƺóµÄÏ߶ÎCD£¬²¢Ð´³öµãCµÄ×ø±ê£»
£¨2£©Èç¹ûƽÒÆʱֻÄÜ×óÓÒ»òÉÏÏÂÒƶ¯£¬ÐðÊöÏ߶ÎABÊÇÔõÑùÒƵ½CDµÄ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬¡÷ABCÖУ¬AB=AC£¬ÇÒ¡ÏBAC=108¡ã£¬µãDÊÇABÉÏÒ»¶¨µã£¬ÇëÔÚBC±ßÉÏÕÒÒ»µãE£¬Ê¹ÒÔB¡¢D¡¢EΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂͼÊÇÒ»¸öÕý·½ÌåµÄ±íÃæÕ¹¿ªÍ¼£¬ÔòÔ­Õý·½ÌåÖÐÓë¡°½¨¡±×ÖËùÔÚµÄÃæÏà¶ÔµÄÃæÉϱêµÄ×ÖÊÇ£¨¡¡¡¡£©
A£®ÃÀB£®ÀöC£®ÄÏD£®½­

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸