精英家教网 > 初中数学 > 题目详情
在同一坐标系中,若正比例函数y=2x与反比例函数y=
k-2x
(k≠2)的图象有公共点,则k的一个值可以是
 
(写出一个即可).
分析:根据正比例函数y=2x与反比例函数y=
k-2
x
(k≠2)的图象有公共点,则2x=
k-2
x
,根据一元二次方程有解,求得k的取值范围,写出一个k的值即可.
解答:解:∵正比例函数y=2x与反比例函数y=
k-2
x
(k≠2)的图象有公共点,
∴2x=
k-2
x

∴2x2-k+2=0有解,
∴△=0+8(k-2)>0,
解得k>2,
则k的一个值可以是3.
故答案为3.
点评:本题主要考查反比例函数与一次函数的交点问题的知识点,解答本题的关键是理解两个函数图象有交点的含义,此题是开放题,k值不确定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

先阅读短文,再解答短文后面的问题.
规定了方向的线段称为有向线段.比如,对于线段AB,规定以A为起点,B为终点,便可得到一条从A到B的有向线段.为强调其方向,我们在其终点B处画上箭头(如下图-1).以A为起点,B为终点的有向线段记为
AB
(起点字母A写在前面,终点字母B写在后面).线段AB的长度叫做有向线AB的长度(或模),记为|
AB
|.显然,有向线段
AB
和有向线段
BA
长度相同.方向不同,它们不是同一条有向线段.
对于同一平面内的有向线段,我们可以在该平面建立直角坐标系进行研究(一般情况,直角坐标系的单位长度与有向线段的单位长度相同).比如,以坐标原点O(0,0)为起点,P(3,0)为终点的有向线段
OP
,其方向与x轴正方向相同,长度(或模)是|
OP
|=3.
问题:
(1)在如图所示的平面直角坐标系中画出
OA
有向线段,使得
OA
=3
2
OA
与x轴正半轴的夹角是45°,且与y轴的负半轴的夹角是45°;
(2)若有向线段
OB
的终点B的坐标为(3,
3
),试求出它的模及它与x轴正半轴的夹角;
(3)若点M、A、P在同一直线上,|
MA
|+|
AP
|=|
MP
|
成立吗?试画出示意图加以说明.(示意图可以不画在平面直角坐标系中)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+2ax-b与x轴交于A、B两点,与y轴正半轴交于C点,且A(-4,0),OC=2OB.
(1)求出抛物线的解析式;
(2)如图①,作矩形ABDE,使DE过点C,点P是AB边上的一动点,连接PE,作PF⊥PE交BD于点F.设线段PB的长为x,线段BF的长为
1
2
y
.当P点运动时,求y与x的函数关系式并写出自变量x的取值范围,在同一直角坐标系中,该函数的图象与图①的抛物线中y≥0的部分有何关系?
(3)如图②,在图①的抛物线中,点H为其顶点,G为抛物线上一动点(不与H重合),取点N(-1,0),作MN⊥GN且MN=
2
3
GN
(点M、N、G按逆时针顺序),当点G在抛物线上运动时,直线AM、GH是否存在某种位置关系?若存在,写出并证明你的结论;若不存在,请说明理由. 精英家教网

查看答案和解析>>

科目:初中数学 来源:2008-2009学年重庆市一中九年级(上)期末数学试卷(解析版) 题型:解答题

如图,抛物线y=ax2+2ax-b与x轴交于A、B两点,与y轴正半轴交于C点,且A(-4,0),OC=2OB.
(1)求出抛物线的解析式;
(2)如图①,作矩形ABDE,使DE过点C,点P是AB边上的一动点,连接PE,作PF⊥PE交BD于点F.设线段PB的长为x,线段BF的长为.当P点运动时,求y与x的函数关系式并写出自变量x的取值范围,在同一直角坐标系中,该函数的图象与图①的抛物线中y≥0的部分有何关系?
(3)如图②,在图①的抛物线中,点H为其顶点,G为抛物线上一动点(不与H重合),取点N(-1,0),作MN⊥GN且(点M、N、G按逆时针顺序),当点G在抛物线上运动时,直线AM、GH是否存在某种位置关系?若存在,写出并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第7章《锐角三角函数》中考题集(29):7.5 解直角三角形(解析版) 题型:解答题

先阅读短文,再解答短文后面的问题.
规定了方向的线段称为有向线段.比如,对于线段AB,规定以A为起点,B为终点,便可得到一条从A到B的有向线段.为强调其方向,我们在其终点B处画上箭头(如下图-1).以A为起点,B为终点的有向线段记为(起点字母A写在前面,终点字母B写在后面).线段AB的长度叫做有向线AB的长度(或模),记为||.显然,有向线段和有向线段长度相同.方向不同,它们不是同一条有向线段.
对于同一平面内的有向线段,我们可以在该平面建立直角坐标系进行研究(一般情况,直角坐标系的单位长度与有向线段的单位长度相同).比如,以坐标原点O(0,0)为起点,P(3,0)为终点的有向线段,其方向与x轴正方向相同,长度(或模)是||=3.
问题:
(1)在如图所示的平面直角坐标系中画出有向线段,使得=3与x轴正半轴的夹角是45°,且与y轴的负半轴的夹角是45°;
(2)若有向线段的终点B的坐标为(3,),试求出它的模及它与x轴正半轴的夹角;
(3)若点M、A、P在同一直线上,成立吗?试画出示意图加以说明.(示意图可以不画在平面直角坐标系中)

查看答案和解析>>

科目:初中数学 来源:第4章《锐角三角形》中考题集(26):4.3 解直角三角形及其应用(解析版) 题型:解答题

先阅读短文,再解答短文后面的问题.
规定了方向的线段称为有向线段.比如,对于线段AB,规定以A为起点,B为终点,便可得到一条从A到B的有向线段.为强调其方向,我们在其终点B处画上箭头(如下图-1).以A为起点,B为终点的有向线段记为(起点字母A写在前面,终点字母B写在后面).线段AB的长度叫做有向线AB的长度(或模),记为||.显然,有向线段和有向线段长度相同.方向不同,它们不是同一条有向线段.
对于同一平面内的有向线段,我们可以在该平面建立直角坐标系进行研究(一般情况,直角坐标系的单位长度与有向线段的单位长度相同).比如,以坐标原点O(0,0)为起点,P(3,0)为终点的有向线段,其方向与x轴正方向相同,长度(或模)是||=3.
问题:
(1)在如图所示的平面直角坐标系中画出有向线段,使得=3与x轴正半轴的夹角是45°,且与y轴的负半轴的夹角是45°;
(2)若有向线段的终点B的坐标为(3,),试求出它的模及它与x轴正半轴的夹角;
(3)若点M、A、P在同一直线上,成立吗?试画出示意图加以说明.(示意图可以不画在平面直角坐标系中)

查看答案和解析>>

同步练习册答案