精英家教网 > 初中数学 > 题目详情
15.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45,2016是第63个三角形数.

分析 根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.

解答 解:第9个三角形数是1+2+3+4+5+6+7+8+9=45,
1+2+3+4+…+n=2016,
n(n+1)=4032,
解得:n=63.
故答案为:45,63.

点评 此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.尺规作图(保留作图痕迹,不写作法)
如图,已知线段a,h,求作以a为底、h为高的等腰三角形ABC,使AC=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.关于x的方程x2+2x-m=0有两个相等的实数根,则m=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.
(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;
(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{9}$D.$\frac{1}{16}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.有三张卡片(形状、大小、颜色、质地都相等),正面分别写上整式x2+1,-x2-2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式$\frac{A}{B}$.
(1)请用画树状图或列表的方法,写出代数式$\frac{A}{B}$所有可能的结果;
(2)求代数式$\frac{A}{B}$恰好是分式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为(  )
A.1.11×104B.11.1×104C.1.11×105D.1.11×106

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是(  )
劳动时间(小时)33.544.5
人  数1121
A.中位数是4,平均数是3.75B.众数是4,平均数是3.75
C.中位数是4,平均数是3.8D.众数是2,平均数是3.8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知$\frac{AB}{BC}=\frac{3}{2}$,则$\frac{DE}{DF}$的值为(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案