精英家教网 > 初中数学 > 题目详情

【题目】在正方形ABCD中,AC为对角线,点EAC上一点,连接EBED.

(1)求证:△BEC≌△DEC

(2)延长BEAD于点F,当∠BED120°时,求∠EFD的度数.

【答案】(1)见解析;(2)105°

【解析】试题分析:(1)根据正方形的性质可得BC=CD,ECB=ECD=45°,利用全等三角形的判定方法判定BEC≌△DEC(2)根据全等三角形的性质可得BEC=DEC= ,因为BED=120°,所以BEC=60°=AEF,

所以EFD=60°+45°=105°.

试题解析: (1)证明:∵四边形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°,

∴在△BEC与△DEC,

,

∴△BEC≌△DEC(SAS),

(2)∵△BEC≌△DEC,

∴∠BEC=DEC= ,

∵∠BED=120°,

∴∠BEC=60°=∠AEF,

∴∠EFD=60°+45°=105°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将一列有理数-1,2,-3,4,-5,6,…如图排序根据图中的排列规律可知“峰1”中峰顶的位置(C的位置)是有理数4,那么“峰4”中C的位置是有理数________有理数“2018”应排在ABCDE中的________位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上点 A 表示的有理数为﹣4,点 B 表示的有理数为 6,点 P A 出发以每秒 2 个单位长度的速度在数轴上沿由 A B 方向运动,当点 P 达点 B 后立即返回,仍然以每秒 2 个单位长度的速度运动至点 A 停止运动.设 运动时间为 t(单位:秒).

1)求 t=2 时点 P 表示的有理数;

2)求点 P AB 的中点时 t 的值;

3)在点 P 由点 A 到点 B 的运动过程中,求点 P 与点 A 的距离(用含 t 的代数式表示);

4在点 P 由点 B 到点 A 的返回过程中 P 表示的有理数是多少(用含 t 代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年起,昆明将迎来高铁时代,这就意味着今后昆明的市民外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从昆明到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为________千米;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABC 中,∠C=90°,DBBC 于点 ,分别以点 D 和点 为圆心,以大于 的长为半径作弧,两弧相交于点 E 和点 ,作直线 EF,延长 AB 于点 ,连接 DG,下面是说明 ∠A=∠D 的说理过程,请把下面的说理过程补充完整:

因为 DBBC(已知),

所以 DBC=90°( )

因为 C=90°(已知),

所以 DBC=C(等量代换),

所以 DBAC ( )

所以 (两直线平行,同位角相等);

由作图法可知:直线 EF 是线段 DB ( )

所以 GD=GB,线段 (上的点到线段两端点的距离相等),

所以 ( ) ,因为 A=1(已知),

所以 A=D(等量代换).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=2 ,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将 绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是正方形ABCD对角线AC上一点,EFABEGBC,垂足分别为FG,若正方形ABCD的周长是40cm.

(1)求证:四边形BFEG是矩形;

(2)求四边形EFBG的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线,垂足为O,直线PQ经过点O,且B在直线l上,位于点O下方,C在直线PQ上运动连接BC过点C,交直线MN于点A,连接A、C与点O都不重合

小明经过画图、度量发现:在中,始终有一个角与相等,这个角是________________;

时,在图中画出示意图并证明

探索之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:( 1 +tan60°+|3﹣2 |.

查看答案和解析>>

同步练习册答案