精英家教网 > 初中数学 > 题目详情
5.已知△ABC≌△DEF,在△ABC中,∠ACB=90°,BC=3,AC=4.现将这两个全等的直角三角形按图①所示位置摆放,点A与点E重合,直角边AC与EF在同一直线上,如图②,现固定△ABC,将△DEF沿射线AC方向平行移动,运动过程中,直线DE与直线AB交于点M,点N是线段AC的中点,当点E运动到点N时停止运动.设AM=x.

(1)如图①,求点A与点E重合时两三角形重叠部分的面积;
(2)在△DEF运动过程中,△AMN能不能是以MN为腰的等腰三角形?若不能,请说明理由;若能,求出对应的x的值;
(3)在△DEF运动过程中,设两个三角形重叠部分面积为y,直接写出y与x的函数解析式及对应的x的取值范围.

分析 (1)由两三角形全等以及边角关系,能够找出重叠部分的两条直角边,利用三角形的面积公式即可得出结论;
(2)借助角的三角函数值,可将各边换成含x的代数式,再由边与边的关系即可求出结论;
(3)分成三部分,每部分图形样式不同,画出图形,数形结合,即可得出结论.

解答 解:(1)令AB与DF交点为P,如图1,

∵在△ABC中,∠ACB=90°,BC=3,AC=4,
∴tan∠BAC=$\frac{BC}{AC}$=$\frac{3}{4}$,AB=5,
∵△ABC≌△DEF,
∴EF=BC=3,
∴FP=EF×tan∠BAC=3×$\frac{3}{4}$=$\frac{9}{4}$,
△EFP=$\frac{1}{2}$×EF×FP=$\frac{1}{2}$×3×$\frac{9}{4}$=$\frac{27}{8}$.
故点A与点E重合时两三角形重叠部分的面积为$\frac{27}{8}$.
(2)假设存在,则分两种情况:
①当NM=AM时,过M作MQ⊥AC于Q点,如图2,

∵在△ABC中,∠ACB=90°,BC=3,AC=4,
∴AB=5(勾股定理),cos∠BAC=$\frac{4}{5}$,
∵NM=AM,MQ⊥AC,
∴AQ=$\frac{1}{2}$AN=AM×cos∠BAC=$\frac{4}{5}$x,
∵点N是线段AC的中点,
∴AN=$\frac{1}{2}$AC=2,
∴有$\frac{4}{5}$x=1,解得x=$\frac{5}{4}$.
②当NM=AN时,过M作MQ1⊥AC于Q1点,如图3,

∵AM=x,∠ACB=90°,BC=3,AC=4,
∴MQ1=$\frac{3}{5}$x,AQ1=$\frac{4}{5}$x,
∵AN=2,
∴NQ1=AQ1-AN=$\frac{4}{5}$x-2,
在直角△NMQ1中,由勾股定理,得${(\frac{3}{5}x)}^{2}$+${(\frac{4}{5}x-2)}^{2}$=22
即x2-$\frac{16}{5}$x=0,解得x=0(舍去)或x=$\frac{16}{5}$.
结合①②得知,两种情况下,点E都没有运动到N点,故在△DEF运动过程中,△AMN能是以MN为腰的等腰三角形,此时x的值为$\frac{5}{4}$或$\frac{16}{5}$.
(3)①当F点在线段AC上时(同图2),令DF与AB交于R点

此时有MQ=$\frac{3}{5}$x,AQ=$\frac{4}{5}$x,QE=$\frac{3}{4}$MQ=$\frac{9}{20}$x,AE=AQ-QE=$\frac{7}{20}$x,
∵F点在线段AC上,
∴0≤AE≤AC-EF,即0≤$\frac{7}{20}$x≤1,
∴0≤x≤$\frac{20}{7}$,
AF=AE+EF=$\frac{7}{20}$x+3,FR=$\frac{3}{4}$AF=$\frac{21}{80}$x+$\frac{9}{4}$,
CF=AC-AF=1-$\frac{7}{20}$x,
y=$\frac{1}{2}$×AB×BC-$\frac{1}{2}$×AE×MQ-$\frac{1}{2}$×(FR+BC)×CF=$\frac{27}{8}$+$\frac{63x}{80}$-$\frac{147{x}^{2}}{3200}$(0≤x≤$\frac{20}{7}$).
②当F点在线段AC延长线上,且M点在线段AB上,(同图3)此时$\frac{20}{7}$<x≤5,
MQ1=$\frac{3}{5}$x,AQ1=$\frac{4}{5}$x,CQ1=AC-AQ1=4-$\frac{4}{5}$x,EQ1=$\frac{3}{4}$MQ1=$\frac{9}{20}$x,
y=$\frac{1}{2}$•EQ1•MQ1+$\frac{1}{2}$•(MQ1+BC)•CQ1=6-$\frac{69}{200}$•x2($\frac{20}{7}$<x≤5).
③当M点在线段AB延长线上,且E点不超过N点,如图4,

过M作MS⊥AC交AC延长线于S点,令DE与BC交点为T点,
MS=$\frac{3}{5}$x,SA=$\frac{4}{5}$x,SE=$\frac{3}{4}$MS=$\frac{9}{20}$x,AE=SA-SE=$\frac{7}{20}$x,CE=AC-AE=4-$\frac{7}{20}$x,CT=$\frac{4}{3}$CE=$\frac{16}{3}$-$\frac{7}{15}$x,
当N、E重合时,有AE=AN=2,即$\frac{7}{20}$x=2,解得x=$\frac{40}{7}$,
y=$\frac{1}{2}$•CE•CT=$\frac{32}{3}$-$\frac{28}{15}$x+$\frac{49}{600}$x2(5<x≤$\frac{40}{7}$).
综合①②③得知y=$\left\{\begin{array}{l}{\frac{27}{8}+\frac{63}{80}x-\frac{147}{3200}{x}^{2}(0≤x≤\frac{20}{7})}\\{6-\frac{69}{200}{x}^{2}(\frac{20}{7}<x≤5)}\\{\frac{32}{3}-\frac{28}{15}x+\frac{49}{600}{x}^{2}(5<x≤\frac{40}{7})}\end{array}\right.$.

点评 本题考查了三角形的面积、三角函数以及勾股定理等知识,解题的关键是画出图形,利用数形结合即可方便快速的解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.在平面直角坐标系中,把直线y=2x-3沿y轴向上平移2个单位后,得到的直线的函数表达式为(  )
A.y=2x+2B.y=2x-5C.y=2x+1D.y=2x-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在梯形ABCD中,AD∥BC,AD=a,BC=b,点M,N分别在线段AB和CD上,有MN∥AD,且MN将梯形ABCD分成面积相等的两部分,则MN=$\frac{\sqrt{2({a}^{2}+{b}^{2})}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.我市的重大惠民工程--公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-$\frac{1}{6}$x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-$\frac{1}{8}$x+$\frac{19}{4}$(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如表:
z(元/m25052545658
x(年)12345
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.求x的值 
(1)x2-49=0;             
(2)4x2-1=0;      
(3)x3-8=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,矩形ABCD中,E为BC上一点,F为CD上一点,已知∠AEF=90°,∠AFE=30°,△ECF的外接圆切AD于H,则sin∠DAF=$\frac{3}{14}\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知∠BAD=135°,∠BAC=∠BDC=90°,DB=DC=4,AB=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装,生产开始后,调研部分发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)每名熟练工招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多余熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列各题中正确的是(  )
A.由7x=4x-3移项得7x-4x=3
B.由$\frac{2x-1}{3}=1+\frac{x-3}{2}$去分母得2(2x-1)=1+3(x-3)
C.由2(2x-1)-3(x-3)=1去括号得4x-2-3x-9=1
D.由2x+1=x+7移项,合并同类项得x=6

查看答案和解析>>

同步练习册答案