【题目】如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点A′处,此时点B落在点B′处.已知折痕EF=13,则AE的长等于_________.
【答案】
【解析】过点F作FG⊥AD,垂足为G,连接AA′,在△GEF中,由勾股定理可求得EG=5,轴对称的性质可知AA′⊥EF,由同角的余角相等可证明∠EAH=∠GFE,从而可证明△ADA′≌△FGE,故此可知GE=DA′=5,最后在△EDA′利用勾股定理列方程求解即可.
解:过点F作FG⊥AD,垂足为G,连接AA′.
在Rt△EFG中,EG=,
∵轴对称的性质可知AA′⊥EF,
∴∠EAH+∠AEH=90.
∵FG⊥AD,
∴∠GEF+∠EFG=90.
∴∠DAA′=∠GFE.
在△GEF和△DA′A中,
,
∴△GEF≌△DA′A.
∴DA′=EG=5.
设AE=x,由翻折的性质可知EA′=x,则DE=12x.
在Rt△EDA′中,由勾股定理得:A′E2=DE2+A′D2,即x2=(12x)2+52.
解得:x=.
故答案为: .
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD绕点A按逆时针方向旋转,得到矩形AEFG,E点正好落在边CD上,连接BE,BG,且BG交AE于P.
(1)求证:∠CBE=∠BAE;
(2)求证:PG=PB;
(3)若AB=,BC=3,求出BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,MN是⊙O的直径,MN=2a,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则 PA+PB的最小值为_____.(用含a的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(操作发现)三角形三个顶点与重心的连线段,将该三角形面积三等分.
(1)如图①:中,中线
、
、
相交于点
.求证:
.
(提出问题)如图②,探究在四边形中,
是
边上任意一点,
与
和
的面积之间的关系.
(2)为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
如图③,当时,探求
与
和
之间的关系,写出求解过程.
(问题解决)
(3)推广,当(
表示正整数)时,直接写出
与
和
之间的关系:____________.
(4)一般地,当时,
与
和
之间的关系式为:____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上.点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,1cm半径作⊙O.点P与点D同时出发,设它们的运动时间为t(单位:s) (0≤t≤).
(1)如图1,连接DQ,若DQ平分∠BDC,则t的值为 s;
(2)如图2,连接CM,设△CMQ的面积为S,求S关于t的函数关系式;
(3)在运动过程中,当t为何值时,⊙O与MN第一次相切?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球的个数是白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是.
(1)求袋中红球的个数;
(2)求从袋中摸出一个球是白球的概率;
(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】说明:在解答“结论应用”时,从(A),(B)两题中仸选一题做答.
问题探究
启知学习小组在课外学习时,发现了这样一个问题:如图(1),在四边形ABCD中,连接AC,BD,如果△ABC与△BCD的面积相等,那么AD∥BC.在小组交流时,他们在图(1)中添加了如图所示的辅助线,AE⊥BC于点E,DF⊥BC于点F.请你完成他们的证明过程.
结论应用
在平面直角坐标系中,反比例函数的图象经过A(1,4),B(a,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D.
(A)(1)求反比例函数的表达式;
(2)如图(2),已知b=1,AC,BD相交于点E,求证:CD∥AB.
(B)(1)求反比例函数的表达式;
(2)如图(3),若点B在第三象限,判断并证明CD与AB的位置关系.
我选择:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=的图象如图所示,则以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(-1,a),点B(2,b)在图象上,则a <b;④若点P(x,y)在图象上,则点P1(-x,y)也在图象上.其中正确的个数为( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+2与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.
(1)求k的值;
(2)点N(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com