【题目】如图,二次函数的图象与轴的一个交点为,另一个交点为,且与轴相交于点
(1)则_________;点坐标为___________;
(2)在直线上方的抛物线上是否存在一点,使得它与,两点构成的三角形面积最大,若存在,求出此时点坐标;若不存在,请简要说明理由.
(3)为抛物线上一点,它关于直线的对称点为
①当四边形为菱形时,求点的坐标;
②点的横坐标为,当________时,四边形的面积最大.
【答案】(1)4,(0,4);(2)存在,(2,6);(3)①点坐标为或;②2.
【解析】
(1)用待定系数法求出抛物线解析式;
(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;
(3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;
②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.
解:(1)将B(4,0)代入y=-x2+3x+m,
解得,m=4,
∴二次函数解析式为y=-x2+3x+4,
令x=0,得y=4,
∴C(0,4),
故答案为:4,(0,4);
(2)存在,
理由:∵B(4,0),C(0,4),
∴直线BC解析式为y=-x+4,
当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,
∴,
∴x2-4x+b=0,
∴△=16-4b=0,
∴b=4,
∴,
∴M(2,6),
(3)①如图,
∵点P在抛物线上,
∴设P(m,-m2+3m+4),
当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,
∵B(4,0),C(0,4)
∴线段BC的垂直平分线的解析式为y=x,
∴m=-m2+3m+4,
∴m=1±,
∴P(1+,1+)或P(1-,1-),
②如图,
设点P(t,-t2+3t+4),
过点P作y轴的平行线l,过点C作l的垂线,
∵点D在直线BC上,
∴D(t,-t+4),
∵PD=-t2+3t+4-(-t+4)
=-t2+4t,
BE+CF=4,
∴S四边形PBQC=2S△PCB
=2(S△PCD+S△PBD)
=2(PD×CF+PD×BE)
=4PD
=-4t2+16t,
∵0<t<4,
∴当t=2时,S四边形PBQC最大=16,
故答案为:2.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.
例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).
(1)直接写出点A(2,1)的“伴随点”A′的坐标.
(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.
(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.
(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 抛物线与轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①;②;③对于任意实数m,总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为
A. 1 个 B. 2 个 C. 3 个 D. 4 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究:已知二次函数经过点.
(1)求该函数的表达式;
(2)如图所示,点是抛物线上在第二象限内的一个动点,且点的横坐标为,连接,,.
①求的面积关于的函数关系式;
②求的面积的最大值,并求出此时点的坐标.
拓展:在平面直角坐标系中,点的坐标为,的坐标为,若抛物线与线段有两个不同的交点,请直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将绕点C逆时针方向旋转60°得到,连接DE.
(1)如图1,求证:是等边三角形;
(2)如图2,当6<t<10时,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.
(3)当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图像交轴于,两点,交轴于点,连接,已知.
(1)点的坐标是______;
(2)若点是抛物线上的任意一点,连接、.
①当与的面积相等时,求点的坐标;
②把沿着翻折,若点与抛物线对称轴上的点重合,直接写出点的横坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com