【题目】如图在平面直角坐标系中,A.B两点的坐标分别为(﹣2,2),(1,8),
(1)求△ABO的面积.
(2)若y轴上有一点M,且△MAB的面积为10.求M点的坐标.
(3)如图,把直线AB以每秒2个单位的速度向右平移,运动t秒钟后,直线AB过点F(0,﹣2),此时A点的坐标为 ,B点的坐标为 ,过点A作AE⊥y轴于点E,过点B作BD⊥y轴于点D,请根据S△FBD=S△FAE+S梯形ABDE,求出满足条件的运动时间t的值.
【答案】(1)9;(2)或;(3)
【解析】
(1)过作轴于,过作轴于,根据、两点的坐标分别为,,得到,,,于是得到结论;
(2)设直线的解析式为,于是得到直线的解析式为,解方程得到,根据三角形的面积列方程即可得到结论;
(3)设平移后的直线的解析式为:,把代入求得平移后的直线的解析式为:;根据图形的面积的计算方法即可得到结论.
(1)过作轴于,过作轴于,
、两点的坐标分别为,,
,,,
;
(2)设直线的解析式为,
,
,
直线的解析式为,
直线与轴的交点坐标为,
设,
,
解得:或,
或;
(3)设平移后的直线的解析式为:,
把代入:得,
平移后的直线的解析式为:,
当时,;当时,,
,,
,
,
.
科目:初中数学 来源: 题型:
【题目】小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1 , y1),P2(x2 , y2),可通过构造直角三角形利用图1得到结论:P1P2= 他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x= ,y= .
(1)请你帮小明写出中点坐标公式的证明过程;
(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;
②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;
(3)如图3,点P(2,n)在函数y= x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠MON=51°,点P在∠MON的内部,点D是边ON上任意一点,点C是边OM上任意一点,连接PD、PC,当△PCD的周长最小时,∠CPD的度数为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD的顶点为A(1,2),B(﹣1,2),C,(﹣1,﹣2),D(1,﹣2),点M和点N同时从E点出发,沿四边形的边做环绕匀速运动,M点以1单位/s的速度做逆时针运动,N点以2单位/s的速度做顺时针运动,则点M和点N第2019次相遇时的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一元二次方程1﹣(x﹣3)(x+2)=0,有两个实数根x1和x2 , (x1<x2),则下列判断正确的是( )
A.﹣2<x1<x2<3
B.x1<﹣2<3<x2
C.﹣2<x1<3<x2
D.x1<﹣2<x2<3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】代数式ax2+bx+c(a≠0,a,b,c是常数)中,x与ax2+bx+c的对应值如下表:
x | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | |||
ax2+bx+c | ﹣2 | ﹣ | 1 | 2 | 1 | ﹣ | ﹣2 |
请判断一元二次方程ax2+bx+c=0(a≠0,a,b,c是常数)的两个根x1 , x2的取值范围是下列选项中的( )
A.﹣ <x1<0, <x2<2
B.﹣1<x1<﹣ ,2<x2<
C.﹣ <x1<0,2<x2<
D.﹣1<x1<﹣ , <x2<2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两块相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′BC′的位置,点C′在AC上,A′C′与AB相交于点D,则C′D= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com