精英家教网 > 初中数学 > 题目详情
精英家教网如图,在直角坐标平面内,点0为坐标原点,直线AB经过A(8,0),B(0,6),现有两个动点P,Q.动点P从B沿BA方向以1个单位每秒的速度向A运动,动点Q从A沿AO方向2个单位每秒的速度向O运动,当P,Q两点中的任何一点到达终点时,运动停止.
(1)求直线AB的解析式.
(2)问当运动时间t为多少秒时,以A、P、Q为顶点的三角形为直角三角形.
分析:(1)根据已知条件,把A、B两点的坐标代入y=kx+b,即可求出k、b的值,很容易地就得到了直线AB的解析式;
(2)本小题要进行讨论,首先当A为直角顶点时,不符合题意,所以A不为直角顶点;当P为直角顶点时,求三角形相似,根据其性质,即可得t的值;当O为直角顶点时,同样求证三角形相似,根据其性质,即可得t的值.
解答:解:(1)设AB解析式为y=kx+6,过A(8,0),则k=-
3
4
,∴解析式为y=-
3
4
x+6(2分)

(2)∵Q在OA上,∴∠PAQ≠90°,在Rt△ABO中,AB=10,(1分)
∴①当PQ⊥AQ时,△APQ为直角三角形.易得△APQ∽△ABO,则
AP
AB
=
AQ
AO
10-t
10
=
2t
8

∴t=
20
7
(2分)
②当PQ⊥AP时,△APQ为直角三角形.易得△APQ∽△AOB,则
AP
AO
=
AQ
AB
10-t
8
=
2t
10

∴t=
50
13
(2分)
综上所得,当t=
20
7
或t=
50
13
时,△APQ为直角三角形.
点评:本题主要考查根据点的坐标求直线的解析式、相似三角形的判定和性质等知识点,关键在于根据题意和图形,正确分析确定哪些点可以为△APQ为直角三角形直角顶点,并逐一讨论求证.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,-4),且过点B(-3,0)
(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=
45
,点P在线段OC上,且PO、OC的长是方程x2-15x+36=0的两根.
(1)求P点坐标;
(2)求AP的长;
(3)在x轴上是否存在点Q,使以A、Q、C、P为顶点的四边形是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面内,函数y=
m
x
(x>0,m是常熟)的图象经过A(1,4),B(a,b),其中a>1,过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB
(Ⅰ)求函数y=
m
x
的解析式;
(Ⅱ)若△ABD的面积为4,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下列各题:
(1)解方程组
2x+y=2;         ①
3x-2y=10.      ②

(2)如图,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),要使以A、B、C、D为顶点的四边形是平行四边形,且点D坐标在第一象限,那么点D的坐标是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步练习册答案