精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.
(1)求证:OF∥BC;
(2)求证:△AFO≌△CEB;
(3)若EB=5cm,CD=10
3
cm,设OE=x,求x值及阴影部分的面积.
分析:(1)根据直径所对的圆周角是直角,以及垂直于同一直线的两直线平行即可证得;
(2)根据垂径定理以及等弧所对的圆周角相等,即可证得:△AFO和△CEB的两个角相等,从而证得两个三角形相似;
(3)根据勾股定理求得x的值,然后根据阴影部分的面积=扇形COD的面积-△COD的面积即可求解.
解答:(1)证明:∵AB为⊙O的直径,
∴AC⊥BC
又∵OF⊥AC
∴OF∥BC

(2)证明:∵AB⊥CD
BC
=
BD

∴∠CAB=∠BCD
又∵∠AFO=∠CEB=90°,OF=BE,
∴△AFO≌△CEB

精英家教网(3)解:连接DO.设OE=x,
∵AB⊥CD
∴CE=
1
2
CD=5
3
cm.
在直角△OCE中,OC=OB=x+5(cm),
根据勾股定理可得:(x+5)2=(5
3
2+x2
解得:x=5,即OE=5,
∴tan∠COE=
CE
OE
=
5
3
5
=
3

∴∠COE=60°
∴∠COD=120°,
∴扇形COD的面积是:
120π×102
360
=
100π
3
cm2
△COD的面积是:
1
2
CD•OE=
1
2
×10
3
×5=25
3
cm2
∴阴影部分的面积是:(
100π
3
-25
3
)cm2
点评:本题主要考查了垂径定理,勾股定理,以及扇形的面积的计算,正确求得∠COE的度数是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQ交CD于E,则PE•EQ的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB为半⊙O的直径,直线MN与⊙O相切于C点,AE⊥MN于E,BF⊥MN于F.
求证:(1)AE+BF=AB;(2)EF2=4AE•BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB为⊙O的直径,直线l与⊙O相切于点D,AC⊥l于C,AC交⊙O于点E,DF⊥AB于F.
(1)图中哪条线段与BF相等?试证明你的结论;
(2)若AE=3,CD=2,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•包头)如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB的延长线于点E,AD⊥EC于点D且交⊙O于点F,连接BC,CF,AC.
(1)求证:BC=CF;
(2)若AD=6,DE=8,求BE的长;
(3)求证:AF+2DF=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•呼和浩特)如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.
(1)求证:∠PAC=∠B,且PA•BC=AB•CD;
(2)若PA=10,sinP=
35
,求PE的长.

查看答案和解析>>

同步练习册答案