【题目】我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”,在Rt△ABC中,∠ACB=90°,AB=4,AC=2,D是BC的中点,点M是AB边上一点,当四边形ACDM是“等邻边四边形”时,BM的长为 .
【答案】2或3或
【解析】解:当AM=AC时,如图1所示. ∵AB=4,AC=2,
∴BE=AB﹣AE=4﹣2=2;
当DM=DC时,过点D作DE⊥AB于E,如图2所示.
在Rt△ABC中,∠ACB=90°,AB=4,AC=2,
∴BC= =2 ,∠B=30°.
∵D是BC的中点,
∴BD=CD=DM= .
在Rt△BDE中,BD= ,∠B=30°,∠BED=90°,
∴DE= BD= ,BE= = .
∵DB=DM,DE⊥BM,
∴BM=2BE=3;
当MD=MA时,如图3所示.
∵BE= ,AB=4,
∴AE= .
设EM=x,则AM= ﹣x.
在Rt△DEM中,DE= ,∠DEM=90°,EM=x,
∴DM2=DE2+EM2= +x2 .
∵MD=MA,
∴ +x2=( ﹣x)2 ,
解得:x= ,
∴BM=BE+EM= + = .
综上所述:当四边形ACDM是“等邻边四边形”时,BM的长为2或3或 .
所以答案是:2或3或 .
【考点精析】关于本题考查的含30度角的直角三角形和勾股定理的概念,需要了解在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,则BC的长是 ( )
A. 20 B. 20 C. 30 D. 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下所示两幅不完整的统计图,请结合图中所给信息,解答下列问题:
(1)本次调研活动共调研了多少名学生,表示“QQ”的扇形圆心角的度数是多少.
(2)请你补充完整条形统计图;
(3)如果该校有2000名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是由一些棱长都为1的小正方体组合成的简单几何体.
(1)请画出这个几何体的三视图并用阴影表示出来;
(2)该几何体的表面积(含下底面)为 ;
(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加 个小正方体.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.
(1)求证:BE=AD;
(2)求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,建立平面直角坐标系,△ABC的顶点均在格点上.(不写作法)
(1)以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出B1的坐标;
(2)再把△A1B1C1绕点C1 顺时针旋转90°,得到△A2B2C1,请你画出△A2B2C1,并写出B2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菲尔兹奖是国际上有崇高声誉的一个数学奖项,下面的数据是从1936年至2014年菲尔兹奖得主获奖时的年龄(岁): 29 39 35 33 39 27 33 35 31 31 37 32 38 36
31 39 32 38 37 34 29 34 38 32 35 36 33 32
29 35 36 37 39 38 40 38 37 39 38 34 33 40
36 36 37 40 31 38 38 40 40 37 35 40 39 37
请根据上述数据,解答下列问题:
小彬按“组距为5”列出了如图的频数分布表
分组 | 频数 |
A:25~30 | |
B:30~35 | 15 |
C:35~40 | 31 |
D:40~45 | |
合计 | 56 |
(1)每组数据含最小值不含最大值,请将表中空缺的部分补充完整,并补全频数分布直方图;
(2)根据(1)中的频数分布直方图描述这56位菲尔兹奖得主获奖时的年龄的分布特征;
(3)在(1)的基础上,小彬又画了如图所示的扇形统计图,图中获奖年龄在30~35岁的人数约占获奖总人数的%(百分号前保留1位小数);C组所在扇形对应的圆心角度数约为°(保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y1= 的图象与一次函数y2= x的图象交于点A、B,点B的横坐标是4,点P(1,m)在反比例函数y1= 的图象上.
(1)求反比例函数的表达式;
(2)观察图象回答:当x为何范围时,y1>y2;
(3)求△PAB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com